La progettazione di una grande nave da crociera

Post on 11-Jan-2017

220 views 3 download

transcript

La progettazione di una grande nave da crociera

Alessandro Maccari

18 Dicembre 2013

• Organizzazione aziendale e project management

• Aspetti generali di progettazione di base di una grande nave

• Strumenti per la progettazione idrodinamica - simulazioni CFD, ottimizzazione carena ed eliche

• Progettazione strutturale - analisi statica e dinamica, globale e locale

• Rumore irradiato in acqua ed in aria

• Impianti di generazione diesel-elettrica e propulsione – aspetti di energy saving e contenimento delle emissioni inquinanti

• Production Engineering e logistica di produzione

FINCANTIERI at a glance

• 5th

most important shipbuilding group in the world

• 21 shipyards in 3 continents

• About 20000 employees (8400 in Italy)

• 1st player in terms of diversification & activities in high-value sectors:

UNIQUE OPPORTUNITIES OF CROSS-FERTILIZATION

65 cruise ships built

1/3 of worldwide fleet

carrying 8M pass./year

.

200 YEARS OF TRADITION, 7000 SHIPS BUILT

Design Documents Completation

Functional Design

Material provision and expediting

Coordination Design

Executive Design and subdivision in Pallets

Executive Planning and work scheduling

Production from raw material

Pre-fitting and pre-assembly of blocks

Keel laying, assembling and launching

Outfitting Commisioning

Delivery

Start Delivery Production Development

Sea Trials

S K L D

PROJECT MANAGEMENT

Basic Design and Negotiation

Approx. 12 months Approx. 24 months

Life-Cycle Management

Operative Planning

Precontractual Phase

CONTRACT

MOA Proposal / Initial Design

• Organizzazione aziendale e project management

• Aspetti generali di progettazione di base di una grande nave

• Strumenti per la progettazione idrodinamica - simulazioni CFD, ottimizzazione carena ed eliche

• Progettazione strutturale - analisi statica e dinamica, globale e locale

• Rumore irradiato in acqua ed in aria

• Impianti di generazione diesel-elettrica e propulsione – aspetti di energy saving e contenimento delle emissioni inquinanti

• Production Engineering e logistica di produzione

“Ship design is a complex process

involving the integration of many subsystems

into a final solution

which must simultaneously meet

cost and effectiveness measures”

• Coordination of different stakeholders

• Integration of solutions, systems, components

• Careful planning of make-buy strategies

• Cost-effectiveness & Value for money

• Product & Process optimization (design & production)

The role of a shipyard

Basic Design Dept.

Main Activities

• General Arrangement plan

• Ship Technical specification

• Ship Weight breakdown

• Capacity plan

• Bulkhead plan

• Loading Conditions

• Geometric Midship Section

• Engine room Arrangement and “in principle” Diagrams

• Preliminary balances (electrical, air, water, steam)

• Plants / Architects border definition

• Precoordination plans

• Cabin layouts

• Catering item list and layouts

• HVAC / Ventilation calculations

G020 * CUCINE-RIPOST.-BANCHI BAR-PREPAR. ROOM

G020 * DECK 3

G020 0806 * Deck 3 - Crew galley oss. 44-56

G020 0806 Pavimentazione CR-ARR PRC-01 mq 85 30 2.550 35,00 -7,00 8,62

G020 0806 Coaming, foundation and gutterway CR-ARR PRC-01 mq 85 20 1.700 35,00 -7,00 8,65

G020 0806 Pareti CR-ARR PRC-01 mq 85 35,0 2.975 35,00 -7,00 9,80

G020 0806 Porte CR-ARR PRC-01 n 4 80 320 35,00 -7,00 9,55

G020 0806 Soffittature CR-ARR PRC-01 mq 85 17,0 1.445 35,00 -7,00 11,05

G020 0806 Imp. Elettrico CR-ARR PRC-01 mq 85 16 1.360 35,00 -7,00 9,95

G020 0806 Imp. Idrico CR-ARR PRC-01 mq 85 2 170 35,00 -7,00 9,05

conteggiati gli allacciamenti, il

peso dei tubi delle

sottostazioni è conteggiato

nella WBS D_fam

G020 0806 Arredamenti CR-ARR PRC-01 mq 85 85 7.225 35,00 -7,00 9,55

G020 0806

G020 0806 * Totale area 17.745 35,00 -7,00 9,52

G020 0806 * TOTALE DECK 3 17.745 35,00 -7,00 9,52

G020 * DECK 4

G020 0806 * Deck 4 - Galley oss. 35-76

G020 0806 Pavimentazione CR-ARR PRC-01 mq 560 30 16.800 37,00 0,00 11,52

G020 0806 Coaming, foundation and gutterway CR-ARR PRC-01 mq 560 20 11.200 37,00 0,00 11,55

G020 0806 Pareti CR-ARR PRC-01 mq 560 35,0 19.600 37,00 0,00 12,70

G020 0806 Porte CR-ARR PRC-01 n 6 80 480 37,00 0,00 12,45

G020 0806 Soffittature CR-ARR PRC-01 mq 560 17,0 9.520 37,00 0,00 13,95

G020 0806 Imp. Elettrico CR-ARR PRC-01 mq 560 16 8.960 37,00 0,00 12,85

G020 0806 Imp. Idrico CR-ARR PRC-01 mq 560 2 1.120 37,00 0,00 11,95

conteggiati gli allacciamenti, il

peso dei tubi delle

sottostazioni è conteggiato

nella WBS D_fam

G020 0806 Arredamenti CR-ARR PRC-01 mq 560 85 47.600 37,00 0,00 12,45

G020 0806

G020 0806 * Totale area 115.280 37,00 0,00 12,42

G020 0806 * TOTALE DECK 4 115.280 37,00 0,00 12,42

Maybe we should have done those backups...

“This system cannot possibly go wrong”

But if it goes wrong,

it turns out to be impossible to get at, or repair…

Back to 1994…

“…The vessel should be designed

against performance criteria,

on the basis of the application of

assurance technology techniques,

to ensure that the vessel is safe, reliable,

easily maintained and has high availability”

120 cm / 47 in.

THE RESULT

Inaugural Cruise: May 26, 1998

Tonnage: 107,517

Passenger Cabins: 1,301

Length: 949 feet

Height: 188 feet

17 Decks

Registry: Bermuda

Owner’s targets for business, environmental & safety performance of the ship

These issues had never before been addressed in this way for a cruise ship

Additional Class Notations

• Availability of Machinery

• Duplicated Propulsion System

• Independent Propulsion System

SOLAS – Safe Return to Port

design criteria - not details

Selected scenario

Casualty threshold

(fire / flooding)

One of the first ever

to build a fully certified

SRTP large cruise ship

Today: innovative arrangements, layouts

and design configurations

EVOLUTION OF RELIABILITY, AVAILABILITY, REDUNDANCY present past

Pragmatic trade off :

complexity vs. reliability & availability

• Organizzazione aziendale e project management

• Aspetti generali di progettazione di base di una grande nave

• Strumenti per la progettazione idrodinamica - simulazioni CFD, ottimizzazione carena ed eliche

• Progettazione strutturale - analisi statica e dinamica, globale e locale

• Rumore irradiato in acqua ed in aria

• Impianti di generazione diesel-elettrica e propulsione – aspetti di energy saving e contenimento delle emissioni inquinanti

• Production Engineering e logistica di produzione

ACTIVITIES COVER THE ENTIRE SHIP LIFE-CYCLE

PRECONTRACTUAL

Main hydrodynamic characteristics (propulsion, manoeuvring, etc.)

Preliminary hull forms

Basic stability requirements

DESIGN DEVELOPMENT

Hull forms, appendages, propeller

Hydrodynamic calculations, model tests

Stability calculations

Capacity plan

DELIVERY

Sea trials, Inclining test

Final delivery documents approved by Class & National Flag Authority

Naval Architecture

HULL FORM DESIGN Optimised by Computational Fluid Dynamic (CFD - potential and viscous flow codes) - and model tests Model basins: MARIN, SSPA, VMB, Krylov, DMI Hull form developed using NAPA system, for subsequent use in stability calculations and steel structure design

APPENDAGES DESIGN

Shaft brackets, rudders, pod, bilge keels Optimum position and orientation carried out by viscous flow CFD and model tests. Target: minimum resistance, optimum water inflow to the propeller, minimisation of cavitation phenomena, maximum comfort

ACTIVITIES DESCRIPTION

PROPELLER DESIGN

Fixed pitch propeller design & verification

Strict co-operation with controllable pitch propellers suppliers throughout the design process

Tools: traditional lifting surface theory, newly developed panel method code, model tests evaluation of propulsive performance, cavitation, induced hull pressure pulses, integrated forces for 3D vibration analysis.

Blade design to minimise in-water energy generated by the propeller (blade frequency pressure pulses, broad-band energy) in relation to noise and vibration limits. Model tests in advanced facilities, analysed on a wide frequency range

Application of CFD, based on viscous flow (RANSE codes), to decrease excitation forces and noise generated by the propeller.

MANOEUVRING AND CRABBING

Calculations using a code based on statistical hydrodynamic coefficients

Model tests in an ocean basin (MARIN, SSPA, MARINTEK)

Evaluation of manoeuvring performances

Evaluation of transverse thrusters arrangement & power to meet the required crabbing criteria

SEAKEEPING

Calculations with linear code (motions, accelerations, etc.)

Operational study based on longt term analysis tailored on ship mission profile

Model tests in an ocean basin (MARIN, SSPA, MARINTEK, Krylov)

STABILITY Intact and Damage stability calculations, using NAPA system Approval process with Flag Authorities & Classification Societies

LOADING CONDITIONS

Stability, trim, bending moments and shear forces Continuous check of deadweight and stability margins compared with the scheduled lightweight throughout the design process

SEA TRIALS

Check proper loading condition to reach the required draught and trim Carry out speed and manoeuvring preliminary and official trials

INCLINING TEST

Preparation of the official inclining test (loading condition and procedure) Performing the test, measurement of all necessary data Stability manual based on final lightweight data and submission to Class for approval

Naval Architecture activities

Free surface simulation

(viscous code)

Naval Architecture activities -Shaft and Struts orientation

-Wake analysis

(Viscous Computation)

Naval Architecture activities

Appendages Design

Naval Architecture activities

Naval Architecture activities

Naval Architecture activities

Naval Architecture activities

Hull and superstructure design

• Organizzazione aziendale e project management

• Aspetti generali di progettazione di base di una grande nave

• Strumenti per la progettazione idrodinamica - simulazioni CFD, ottimizzazione carena ed eliche

• Progettazione strutturale - analisi statica e dinamica, globale e locale

• Rumore irradiato in acqua ed in aria

• Impianti di generazione diesel-elettrica e propulsione – aspetti di energy saving e contenimento delle emissioni inquinanti

• Production Engineering e logistica di produzione

PRECONTRACTUAL

Structural Configuration for G.A. Plan;

Midship Section: Main Scantlings, preliminary assessment of Longit. Strength (DNV NAUTICUS, LR

Rules)

Hull Weight and Center of Gravity;

Technical Specification for Hull and Painting

CONTRACTUAL

Detailed Midship Section

Hull Modelization (NAPA Steel )

Horizontal, Longitudinal, Transversal Sections for Class and Owner approval (NAPA Steel /

MICROSTATION)

Rule Scantlings and Structural Static Analyses for Longitudinal / Transversal / Local Fatigue / Buckling

strength by F.E. Models (PATRAN / NASTRAN)

Qualitative Dynamic Analyses (PATRAN / NASTRAN)

Design of Passenger Crew Stairs

Painting Specification and related documents

Hull Activities

Longitudinal Strength (Still water/ Wave/ Whipping) Global F.E. Models

Transversal Strength (Racking) Global F.E. Models

Local Strength: Local Areas of Overhanging/Critical Openings in

Longitudinal/Transversal Bulkheads/Main Lounges/ Atrium/ Funnel/ Mast Static

and Dynamic, Local Stress Concentration, Buckling, Fatigue Local F.E. Models

STRUCTURAL DESIGN from Macro to Micro (PATRAN/NASTRAN)

Hull Activities

NAPA STEEL

Hull Tools

Global finite elements

models

Disco of Grand

Princess Class

Analysis of stress

concentration

Hull Activity

Pod of Vista Class

Transverse deflection of

superstructure

Local Strength (door frame model): NASTRAN PATRAN

Hull Tools

Noise and Vibration Activities

Noise and Vibration Activities

Max Vibration Velocity

Noise and Vibration Activities

Torsion

Mode 3

Mode 1

Noise and Vibration Activities

• Organizzazione aziendale e project management

• Aspetti generali di progettazione di base di una grande nave

• Strumenti per la progettazione idrodinamica - simulazioni CFD, ottimizzazione carena ed eliche

• Progettazione strutturale - analisi statica e dinamica, globale e locale

• Rumore irradiato in acqua ed in aria

• Impianti di generazione diesel-elettrica e propulsione – aspetti di energy saving e contenimento delle emissioni inquinanti

• Production Engineering e logistica di produzione

Underwater Noise Emissions

6

ISO Protecting marine ecosystem from underwater radiated noise Measurement and reporting of underwater sound radiated from merchant ships Standardization in the field of under water acoustics IMO Provision for the reduction of noise from commercial shipping and its adverse impacts on marine life EC Several research projects & specialist groups Standard and Regulations do not specify or provide any criteria for adverse effect of underwater sound radiated from ships to marine ecosystem.

7

overlapping groups and initiatives

lack of coordination and clear objectives

who is doing what ?

what are we looking for ?

impact on ship design - production –

operation ?

Industry

noise WG

Calculation model based on SEA (Statistical Energy Analysis): 1. Covering a large range of frequencies;

2. Showing how energy generated by sources on board (vibrations and/or sound waves)

spread through the structure into the sea;

3. Building a large data base of materials and structural response

Yard Efforts

MACHINERY ROOM AIRBORNE NOISE

IRRADIATED INTO THE WATER

MACHINERY ROOM STRUCTURAL NOISE

IRRADIATED INTO THE WATER

11

Underwater Noise Limits and

Measurement Procedures

Human hearing

Human beings can

hear frequencies from

about

20Hz to 20kHz

Biologists

TTS temporary

threshold shift

PTS permanent

threshold shift

• Experiments to measure PTS in marine mammals are unethical

• Consequently, researchers have concentrated the study on TTS

• The sound pressure levels at which PTS are expected to occur are estimated using the experience on human beings of the sound level differences between TTS & PTS

ISO Methodology

12

3

D

d

4

51

2

3

4

5

7

d

6

1

4

2

3

56

7

1

4

2

3

78

9

10

56

D

L

2L2L

12

3

A BC

CPA

4

• 1 target ship • 2 Sailing course • 3 Observation vessel or buoy • 4 hydrophone • A Measurement start point • B Measurement end point • C Position of the hydrophone • D Horizontal distance between the

target ship and hydrophone • L Overall length of the target ship

The in-water unit is deployed using a lifeboat

The buoy is fastened to the lifeboat by a floating rope.

CETENA Methodology

16

Acoustic Signature Database for Cruise Vessels

ambiguous response because there are no unique and agreed criteria…

Underwater Noise Emission Sources

Underwater sound transmission

Noise sources with respect to underwater

noise emission

Finite Element models (software Actran + ANSYS) built up for machinery and propeller noise sources

Hull

vibration

Propeller

noise

Calculations

20

20*Log(r/r0), i.e. 6 dB

Calculations

21

Broad Band Sheet cavitation

150 mm spacing 100 mm from the hull

Transfer function

Propeller Source

Calculations

Summary

Calculations

Objective: Automatic system on board to evaluate

actual noise emissions lower emission strategies

(e.g. changing speed)

• Organizzazione aziendale e project management

• Aspetti generali di progettazione di base di una grande nave

• Strumenti per la progettazione idrodinamica - simulazioni CFD, ottimizzazione carena ed eliche

• Progettazione strutturale - analisi statica e dinamica, globale e locale

• Rumore irradiato in acqua ed in aria

• Impianti di generazione diesel-elettrica e propulsione – aspetti di energy saving e contenimento delle emissioni inquinanti

• Production Engineering e logistica di produzione

REDUCED FUEL USAGE – FUEL COST SAVING

MARPOL Annex VI (Jan.2013) “Energy Efficiency ”

EEDI mandatory for new ships, SEEMP for all ships

Rising cost of fuel is the real driver

behind marine clean technology adoption

Focus on solutions by pay back timescale

Return of 3-5 years required on environmental tech. investment

Shipbuilders live merrily…

…until they meet the accountant

Why emphasis on Life-Cycle Cost ?

NPV costs of a product over its entire life-cycle

Initial investment costs + running costs and revenues

The life-cycle can be subdivided into different phases, as necessary

e.g. addition of new cabins, energy-saving retrofitting

Net Present Value calculation

Pay-Back-Time

For the past several years

cruise lines and yards looking for more energy efficiency

Price targets for cruise ships getting more and more challenging

Ships getting more and more complex

Improved guests expectations, enhanced safety standards

Strict environmental requirements.

Are we reaching the end of the road ?

Can we streamline any more and cut costs ?

How?

Energy saving as a key design driver

FINCANTIERI:

More than 90 energy-saving interventions implemented on new ships:

• Hydrodynamic & Propulsion Efficiency

• Energy Generation & Distribution

• Accurate & Dynamic power management

• Air Conditioning & Ventilation

• Heat Recovery

• Electrical

• Control Systems & Automation

Energy saving = propulsion … or more ???

maximum speed, ambient temperature, house lighting,

ventilation, galley equipment, local entertainment,

thermal insulation, k-factor of glazing, solar cells, pods,

new materials, air conditioning, hull forms, antifouling, propellers, fixed/variable speed equipment, led lights, fan coils,

friction coefficient, painting systems, fin stabilizers,

side thrusters, trim wedges, hull appendages, video eq.,

hvac chillers, smart cards for cabin energy, propulsion motors,

heat recovery, equipment cooling, air supply fans,

fresh water generators, adsorption chillers, laundry equipment,

heaters, amplifier racks, communication, theatre equipment,

elevators, swimming pools, and many many more … … …

Energy ≠ Power

Energy = Power x Time

Energy balance = how energy is produced and consumed

Electric load analysis = evaluation of energy flows

(mechanical, thermal)

Too often systems are designed for full power operation

They do not work effectively at part load (e.g. slow steaming).

This is also true for heat recovery

(e.g. low engine load = low heat recovery,

oil-fired boilers continuously needed to cover evaporators heat demand)

31

Energy efficiency : how ?

Energy Efficiency

Design Index (EEDI)

P erc entag e of T otal F leet D is tanc e T ravelled with R es pec tive

S peed - S ummer

0.00

0.05

0.10

0.15

0.20

0.25

Re

lati

ve

fre

qu

en

cy

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

S peed [kn]

New Configuration of Machinery and Aux. Systems

Propulsion Power Management

Electric Loads

Fresh Water Generators Waste Water Treatment Ship Power Station

Fresh Water Consumption & Production

Black Water Vacuum System

Passenger Vessel Cruise Profiles

Rules for LNG Pax Vessels

Dual-Fuel Engines & Systems

Design of Dual-Fuel LNG Vessel

New Energy Balance

Alternative green power generation

Hydrodynamic & Propulsion Efficiency…

• Computational Fluid Dynamics / potential / viscous codes

• Simulation Based Design for numerical optimization

• Hull forms and appendages

• Hull surface treatment

• Propeller / Rudder design

Latest piece of this puzzle: five-year term agreement between

FINCANTIERI and KRYLOV State Research Center of Russia

Joint R&D activities,

Realization of new generation products and technical services

…and more

Air Conditioning

HVAC is 2nd

energy user after propulsion

Fan-coils / adaptive recirculation / heat recovery / natural ventilation

Electrical

Reduced distribution losses in the network

AC vs. DC with variable speed generation and distribution

Frequency controlled consumers

Lighting - energy and heat efficient, reducing demand for power & HVAC

Control Systems & Automation

Advanced Integrated Automation Monitoring & Control System

for process efficiency and lowest cost operational performance

Impiantistica elettrica sulla C.6223 Royal Princess

3.900.000 m di cavi

65.000 m di strade cavi

20.300 alimentazioni elettriche

510 sottoquadri di distribuzione

33 quadri centralizzati avviatori in apparato motore

16 sottostazioni

3.900.000 m di cavi elettrici così ripartiti

Automation

5%

Air Conditioning

7%

Lighting

14%

LV Distrib.

15%

Miscellaneous

9%

Local

Entertainment

System

8%

Navigation

2%

Comm.

& Security

40%

Operation

Mechanical & Thermal power originate from fuel

Optimum ship operation means fuel saving

• Focusing on both energy production & consumption

• Avoiding system operating at low efficiency modes

• Running devices only when needed

• Tuning systems to meet actual operation modes

• Voyage planning / route optimization

• Training - understanding how any single device affects the whole

What is next ?

• Intelligent control system balancing the loading of each

component for maximum system efficiency

• Hybrid auxiliary power generation:

fuel cell, diesel generating set and batteries

37

Lessons Learned

Ships sharply defined, highly optimized for service profiles

Solutions integrated in a comprehensive

all-encompassing ship configuration assessment

based upon Cost Effectiveness

Benefits from partnership shipyard-cruise lines

proceeding by steady evolution

incremental changes

constant improvement

GREEN

Gas Naturale Liquefatto:

soluzioni progettuali per navi passeggeri

ed interfaccia logistica bordo-terra

39

PERCHE’ IL GAS NATURALE

NOx

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

11.0

12.0

13.0

14.0

2000 2005 2010 2015 2020 2025

Year

NO

x L

imit

g/k

Wh

(5

14

rpm

)

Tier I

Tier III (ECA)

2011

2016

Tier II Global

SOx

LNG come combustibile consente sensibili riduzioni delle emissioni inquinanti rispetto ai combustibili attualmente in uso (Heavy Fuel Oil, Marine GasOil):

- 99% di SOx - 90% di NOx - 20% di CO2 - 99% di particolato

Le normative internazionali impongono limiti progressivamente più severi

Fonti: • Bob Alton PCL: Emissions Abatement Technology

LNG Strategy – Miami, March 12 • Danish Maritime Autority: North European LNG

Infrastructure Project

Marine LNG Terminals

Existing or

under construction

Proposed

Exisiting & Expected ECA’s

Existing

Discussed

Planned

Fonte: Bob Alton PCL: Emissions Abatement Technology LNG Strategy – Miami, March 12

Verranno ampliate le aree protette a livello globale

PERCHE’ IL GAS NATURALE

Si prevede un trend del prezzo del gas (LNG) inferiore del 30-40% rispetto ai combustibili tradizionali

PERCHE’ IL GAS NATURALE

Gli Armatori di navi passeggeri - da crociera e traghetti - chiedono già oggi ai cantieri la progettazione di navi alimentate a LNG / dual-fuel

SVILUPPO DELLA PROPULSIONE A GAS NEL NORD EUROPA

Fonte: Bob Alton PCL: Emissions Abatement Technology LNG Strategy – Miami, March 12

CONSEGNA NOME ARMATORE LFT COSTRUTTORE

2000 Glutra 122,0

2006 Bergensfjord 130,0

2007 Stavangerfjord 129,0

2007 Raunefjord 130,0

2007 Mastrafjord 129,0

2007 Fanafjord 130,0

2009 Moldefjord Fjord1 122,2 Remontowa Shipbuilding SA (PL)

2009 Tideprinsen Tide Sjø 50,0 STX France

2009 Tidekongen Tide Sjø 50,0 STX France

2009 Tidedronningen Tide Sjø 50,0 STX France

2010 Fannefjord Fjord1 122,2 Remontowa Shipbuilding SA (PL)

2010 Romsdalsfjord Fjord1 122,2 Remontowa Shipbuilding SA (PL)

2010 Korsfjord Fjord1 122,2 Remontowa Shipbuilding SA (PL)

2012 Landegode Torghatten Nord 93,0 Remontowa Shipbuilding SA (PL)

2012 Vaeroy Torghatten Nord 93,0 Remontowa Shipbuilding SA (PL)

2012 Baroy Torghatten Nord 93,0 Remontowa Shipbuilding SA (PL)

2013 Lodingen Torghatten Nord 93,0 Remontowa Shipbuilding SA (PL)

2013 Viking Grace Viking Line 214,0 STX Finland

2013 Stavangerfjord Fjord Line 170,0 Bergen/Fosen (N)

2013 Bergensfjord Fjord Line 170,0 Bergen/Fosen (N)

2013 NA Tide Asa 124,0 Remontowa Shipbuilding SA (PL)

2013 NA Tide Asa 124,0 Remontowa Shipbuilding SA (PL)

2014 STQ STQ Quebec 130,0 Fincantieri (I)

TOTALE 23

STX Europe-Norwegian ShipyardsFjord1

Esistono già normative internazionali specifiche, anche se talvolta riferite al trasporto piuttosto che all’utilizzo di LNG:

• International Code for the Construction & Equipment of Ships Carrying Liquified Gas in Bulk – IGC Code;

• International Code of Safety for Ships using Gas or other low flash point fuels – IGF Code & Guidelines,

• Regolamenti e linee guida dei principali Registri di Classifica

GAS NATURALE LIQUEFATTO: SOLUZIONI PROGETTUALI PER NAVI PASSEGGERI

IMPIANTISTICA DI BORDO: MOTORI E GENERATORI

In produzione tre tipi di motori alimentati a LNG:

- Gas-Diesel: funzionamento mediante miscelazione di gasolio e gas o solo gasolio. Ciclo Diesel con l’immissione del gas ad alta pressione

- Dual-Fuel: funzionamento a gas con 1% di MGO e il restante di gas; può funzionare a solo gasolio. Immissione del gas a bassa pressione.

Tali sistemi implicano la presenza di una doppia alimentazione, doppi serbatoi e doppio piping di alimentazione, sistemi di sicurezza per entrambe le alimentazioni…

- Spark Ignition Gas: L’unico combustibile è il gas, la combustione della miscela di gas ed aria avviene in un ciclo Otto, innescata da una scintilla. L’immissione del gas avviene a bassa pressione.

Source: MAN Diesel & Turbo

IMPIANTISTICA DI BORDO: STOCCAGGIO DEL GAS

Studi su sistemi dual-fuel e progetti precompetitivi: • nave passeggeri con serbatoi gas orizzontali • ferry con serbatoi gas verticali

INIZIATIVE DI RICERCA FINCANTIERI PER NAVI ALIMENTATE A LNG

Breakthrough in European Ship and Shipbuilding Technologies

Ministero Istruzione Università e Ricerca PON R&C - Progetto SEAPORT • Studio di sistemi per le aree portuali e l’interconnessione

nave–porto finalizzato all'alimentazione di navi bi-fuel.

Typical Mediterranean Passenger Ferry

LNG as environment friendly marine fuel

4 Wärtsilä 9L50DF Diesel Electric Engines

(500 rpm, 50Hz)

Vertical LNG tanks

TOTAL ENERGY MANAGEMENT AND ALTERNATIVE ENERGY SOURCES

2 independent tanks type C,

in accordance with IMO IGC Code

Filling and loading limit in accordance

with IMO IGF Code.

Tot. design pressure = 11.6 bar (g)

Design temp. range = -196 +45 ˚C

LNG Low Heating Value = 49,2 MJ/kg

Inner shell = Austenitic stainless steel

Insulation = Vacuum insul. + perlite

LNG tank dimensions = 3,6 x 24 m

LNG capacity = 2 x 165 m3

TOTAL ENERGY MANAGEMENT AND ALTERNATIVE ENERGY SOURCES

A ship with traditional E.R 100% HFO B1 ship with Dual-Fuel E.R. 100% LNG B2 ship with Dual-Fuel E.R. LNG 50% HFO 50%

Thanks to lower emissions,

good performance in all

environmental KPIs

Notwithstanding a higher

investment, benefits also

on NPV KPI

Loss of 16

internal cabins

traditional

50% LNG

100% LNG

traditional

100% LNG

50% LNG

traditional

50% LNG

100% LNG

traditional

100% LNG

50% LNG

traditional

50% LNG

100% LNG

traditional

100% LNG

50% LNG

Trend of

positive

effects

Innovation effect

traditional

100% LNG

Loss of 16 internal cabin revenue is minimal in comparison with fuel consumption over 30 years

NPV reduced because of LNG propulsion

LNG + HFO effects to be added together

FINCANTIERI C.6239 «GAUTHIER» Matane–Baie-Coeau–Godbout Ro-Ro Passenger Ferry

L=133m, B=22m, T=5m, Vel.20 nodi, 1000 passeggeri, 180 auto Consegna fine 2014 in Canada. Concentrato di tecnologia e innovazione. • Standard più evoluti in termini di risparmio energetico e basso impatto ambientale. • Propulsione diesel-elettrica, 4 diesel “dual fuel” (LNG/marine diesel oil) tot. 20,9 MW • 2 motori elettrici di propulsione • 2 propulsori azimutali, ciascuno con 2 eliche contro-rotanti • Capacità di carico / scarico in tempi molto rapidi • Certificato con max. classe prevista dai registri e max. classe ghiacci (1 A ed 1 AS)

35 Nm

30 Nm

FINCANTIERI C.6239 «GAUTHIER» Matane–Baie-Coeau–Godbout Ro-Ro Passenger Ferry

1.600 viaggi/anno = 205.000 passeggeri + 118.000 veicoli

Svantaggi • Potere energetico inferiore ad altre fonti • Infrastrutture:

• effetto NIMBY • costo degli impianti, serbatoi, pompe criogeniche, vaporizzatori,

stazione di controllo, formazione e professionalità, ecc. • Come varierà il costo del gas all’aumentare della domanda e della

dipendenza? • Legislazioni future

LNG: SVANTAGGI E ALTERNATIVE

Alternative • Bio-fuels: realtà ? quantità? • Energie rinnovabili: solare, eolica … : quantità? efficienza? • Fuel cells: da vent’anni “saranno utilizzabili tra 5 anni” • Idrogeno: caro, pericoloso, di difficile stoccaggio • Nucleare: dipende dalle politiche • Petrolio: da cent’anni “ce n’è solo per i prossimi 20 anni” • Scrubbers, SCR, filtri: spostano l’inquinamento, non lo eliminano

• Organizzazione aziendale e project management

• Aspetti generali di progettazione di base di una grande nave

• Strumenti per la progettazione idrodinamica - simulazioni CFD, ottimizzazione carena ed eliche

• Progettazione strutturale - analisi statica e dinamica, globale e locale

• Rumore irradiato in acqua ed in aria

• Impianti di generazione diesel-elettrica e propulsione – aspetti di energy saving e contenimento delle emissioni inquinanti

• Production Engineering e logistica di produzione

Production Engineering (P.E.)

processo di industrializzazione

integrata del prodotto nave nelle sue

due componenti principali:

SCAFO e ALLESTIMENTO.

• Individuazione delle migliori

modalità costruttive (risorse

Stabilimento e investimenti previsti)

• Individuazione degli investimenti

necessari e/o specifici per la

commessa

• Ottimizzazione costi e riduzione dei

TEMPI DI PRODUZIONE - requisiti

contrattuali, tecnici, programmatici e di

qualità

Stabilimento di Monfalcone

Principali caratteristiche

• 750.000 mq di superficie (300.000 mq coperti)

• dimesioni bacino: 350 x 56 x 11.3 m

• 1260 m di lunghezza delle banchine

• 2 gru a cavalletto di 400t ciascuna, serventi il bacino

• 2 gru a cavaliere, ciascuna di 1000t, per l’area premontaggio

• 2 gru di 50t ciascuna, serventi lo scalo

• 11 gru, di portate da 2 a 20t

• 40.000 t/anno di strutture d’acciaio per carpenteria navale

• 1.500 t/anno di strutture navali in lega leggera

• fino a 2 navi/anno di circa 115000 t.s.l.

Stabilimento di Monfalcone

Flusso produttivo

Stabilimento di Monfalcone

Officine Scafo

Area di stoccaggio lamiere e profili: 15000 m2

Stabilimento di Monfalcone

Officina Taglio e Sagomatura

Impianto sabbiatura e primerizzazione Taglio e sagomatura profili

Stabilimento di Monfalcone

Officina Taglio e Sagomatura

Impianti di taglio lamiere (Plasma e Ossimetanico)

Stabilimento di Monfalcone

Officina Prefabbricazione

Linea pannelli – Arco Sommerso

Stabilimento di Monfalcone

Officina Prefabbricazione

Linea pannelli – Tracciatura e taglio pannelli

Stabilimento di Monfalcone

Officina Prefabbricazione

Linea pannelli – Saldatura automatica profili

Stabilimento di Monfalcone

Officina Prefabbricazione

Linea blocchi piani – Robot di saldatura

Stabilimento di Monfalcone

Nuova Linea Pannelli + Linea blocchi Piani

Stabilimento di Monfalcone

Officina Prefabbricazione – Area Blocchi piani, curvi e speciali

Stabilimento di Monfalcone

Officina Allestimento

Sistema ribaltamento blocchi

Nuova Area Premontaggio e Preallestimento

• 2 nuove gru a cavaliere, ciascuna di 1000t.

Stabilimento di Monfalcone

Officine Montaggio

Assemblaggio Sezioni di Montaggio

Stabilimento di Monfalcone

Officine Montaggio

Nuova area PREMONTAGGIO

Stabilimento di Monfalcone

Officine Montaggio

PREMONTAGGIO SCAFO

Stabilimento di Monfalcone

Imbarco in bacino

Stabilimento di Monfalcone

Ciclo di produzione nave (teorico) Progettazione costruzione scafo montaggio impianti montaggio arredo

Ciclo di produzione reale Progettazione contrattuale + modifiche costruzione scafo montaggio impianti montaggio arredo

Stabilimento di Monfalcone

Documentazione a. Documentazione PLA (piani di montaggio esecutivi, liste tubi, disegni progettuali di

dettaglio, disegni di arredo...)

b. Documentazione MET (piani di premontaggio blocchi e sezioni, P.E. di allestimento, Fire Prevention Plan, Sistemazione impianti provvisori, programma imbarco cabine, istruzioni di lavoro…)

Stabilimento di Monfalcone

PLA / Piani di Montaggio Si sviluppano sulla base dei piani coordinati, i quali sono a loro volta figli degli schemi di montaggio (unifilari) dei vari impianti, emessi dalla progettazione funzionale.

PLA / Disegni di arredo Si sviluppano sulla base dei piani generali, dei “concept drawings” dell’architetto di S.A., etc.

Stabilimento di Monfalcone

• Organizzazione aziendale e project management

• Aspetti generali di progettazione di base di una grande nave

• Strumenti per la progettazione idrodinamica - simulazioni CFD, ottimizzazione carena ed eliche

• Progettazione strutturale - analisi statica e dinamica, globale e locale

• Rumore irradiato in acqua ed in aria

• Impianti di generazione diesel-elettrica e propulsione – aspetti di energy saving e contenimento delle emissioni inquinanti

• Production Engineering e logistica di produzione

• Considerazioni finali

Safety regulations

Continuously updated

• Learning from past accidents

• Preventing future problems

Examples

Safe Return to Port, Formal Safety Assessment,

Alternative Design, Fire Prevention,

Time to Flood-Sink-Capsize, Water on Deck,

Goal-based / Performance-based Design,

Probabilistic Damage Stability, New Generation Intact Stability Criteria,

Innovative Life-Saving Appliances, Evacuation Analysis,

Pollution Prevention and Control,

Collision & Grounding, Navigation & Bridge Equipment… …

New regulatory framework:

Consequences on cruise market development

• Significant evolution in newbuilding designs New prototypes

• Higher production cost (generated by new regulations)

• Higher costs for smaller vessels

• Prices cannot easily be driven downwards: Yards already at cost

• Financing much more difficult and costly than before

• Increased demand for conversions & refitting

New operational requirements foster new designs

which have to comply with new rules & regulatory changes

Goal

Permit innovation in design

SHIPBUILDING REGULATORY

FRAMEWORK

R&D

safety

environment

business

MAIN DRIVERS OF

INNOVATIVE DESIGN

new technology

Future Designs & Sustainability

New rules & regulations:

exploiting new design opportunities

New technologies:

impact on systems, interfaces, lay-outs,

arrangements

Cruise ship design is big puzzle:

if the shape of one piece changes,

all the adjacent change accordingly

Impact on design:

non linear, not simply the addition of all

factors

Next generation design:

finding the right balance on business /

safety / environment

The role of applied research and innovation

GRAZIE PER L’ATTENZIONE

Ing. Alessandro Maccari

Fincantieri S.p.A.

Corporate – Research & Innovation Manager

Via Genova, 1 - 34121 Trieste

Tel. +39 040 319 2583

E-mail alessandro.maccari@fincantieri.it