Seminario Ruggero Pintus, 4-10-2012

Post on 10-May-2015

531 views 3 download

description

I moderni sistemi di acquisizione 3D sono capaci di digitalizzare rapidamente la geometria e il colore di oggetti con alta accuratezza e risoluzione, producendo modelli 3D digitali con miliardi di punti. Questi modelli sono estremamente adatti nel campo dei Beni Culturali, dove è richiesto un alto livello di campionamento. Questo seminario si concentrerà su due importanti tecniche: un metodo semplice, veloce e robusto per l'allineamento semi-automatico di geometria e colore capace di gestire grandi insiemi di immagini, e un framework di blending di immagini su geometria capace di produrre modelli colorati di grandi dimensioni. L'efficacia di queste tecniche verrà dimostrata su una serie di dati reali nel campo dei Beni Culturali.

transcript

www.crs4.it/vic/

TecnologieTecnologie didi Visual ComputingVisual Computingper per ii BeniBeni CulturaliCulturaliper per ii BeniBeni CulturaliCulturali

R. PintusCRS4 Visual Computing

R. Pintus – CRS4/ViC, October 2012

TecnologieTecnologie per per ii benibeni culturaliculturali

• Focus: digitalizzazione accurata (forma e colore) di siti e manufatti + …– Partire dai dati: Acquisizione -> Trattamento !

– Modelli misurabili

• Molti usi oltre la visualizzazione• Molti usi oltre la visualizzazione

– Riproduzione materica

– Studio di opere d’arte

– Documentazione in-situ di scavi archeologici

– Supporto al restauro e sua documentazione

– Valorizzazione

R. Pintus – CRS4/ViC, October 2012

TecnologieTecnologie per per ii benibeni culturaliculturali

• Le quantità di dati prodotte dai moderni sensori sono però difficili da trattare, archiviare, distribuire, visualizzare– Scalabilità!

• Tecniche attuali sub-ottimali• Tecniche attuali sub-ottimali– Costi, tempi, qualità

• Bisogno di ricerca in tecnologie abilitanti scalabili– Acquisizione

– Processamento geometrico

– Visualizzazione

– …

R. Pintus – CRS4/ViC, October 2012

Tecnologie per i beni culturaliTecnologie per i beni culturali

• Come acquisire e processare efficacemente forma e colore di siti e manufatti?siti e manufatti?– Tecniche di fusione multi-sensore, stream-processing, multiresolution, external

memory algorithms, parallel programming, GPGPUs

• Come archiviare e distribuire efficacemente i modelli?– Multiresolution, adaptive streaming, compression

• Come visualizzarli efficacemente?– Multiresolution, adaptive rendering, out-of-core methods, GPU programming,

parallelization, rasterization, ray-casting

• Come esplorarli?– Novel 3D displays, specific interaction techniques

– Portable devices

R. Pintus – CRS4/ViC, October 2012

AlcuniAlcuni esempiesempi

• Allineamento geometria/colore

• Colorazione di modelli 3D

• Fusione di dati e ricostruzione geometrica

• Visualizzazione scalabile ed interattiva

• Distribuzione di dati in rete• Distribuzione di dati in rete

• Esplorazione su display innovativi

(… e molto altro)

R. Pintus – CRS4/ViC, October 2012

Our GoalOur Goal

6

R. Pintus – CRS4/ViC, October 2012

Modelling vs AcquisitionModelling vs Acquisition

ModellingSubjective Reality

7

AcquisitionObjective reality

R. Pintus – CRS4/ViC, October 2012

3D Reconstruction3D Reconstruction

• Acquire geometry and color• A lot of techniques

– Structured light, laser scanning (triangulation or time-of-flight), photometric stereo, shape-from-X, …

• Which technique?

8

• Which technique?– Object type (big/small, material….) – Cost– Accuracy/Resolution– Time– Complexity

R. Pintus – CRS4/ViC, October 2012

OutlineOutline

• 3D Reconstruction Techniques

• 3D Reconstruction Pipeline – Photo mapping/blending

– Printing

9

– Printing

• Case study

R. Pintus – CRS4/ViC, October 2012

Taxonomy (nonTaxonomy (non--destructive)destructive)

• Contact– Direct Measurements

• rulers, calipers, pantographs, coordinate measuring machines (CMM), AFM

• Non-Contact

10

– Passive• Shape-from-X

– Stereo

– Multiview

– Silhouettes

– Focus/Defocus

– Active• Transmissive

– Computed Tomography (CT)

– Transmissive Ultrasound

• Reflective– Non-Optical Methods

» reflective ultrasound, radar, sonar, MRI

– Time-of-Flight

– Triangulation

» laser striping

» structured lighting

– Photometric Stereo

R. Pintus – CRS4/ViC, October 2012

Taxonomy (nonTaxonomy (non--destructive)destructive)

• Contact– Direct Measurements

• rulers, calipers, pantographs, coordinate measuring machines (CMM), AFM

• Non-Contact

11

– Passive• Shape-from-X

– Stereo

– Multiview

– Silhouettes

– Focus/Defocus

– Active• Transmissive

– Computed Tomography (CT)

– Transmissive Ultrasound

• Reflective– Non-Optical Methods

» reflective ultrasound, radar, sonar, MRI

– Time-of-Flight

– Triangulation

» laser striping

» structured lighting

– Photometric Stereo

R. Pintus – CRS4/ViC, October 2012

Taxonomy (nonTaxonomy (non--destructive)destructive)

• Contact– Direct Measurements

• rulers, calipers, pantographs, coordinate measuring machines (CMM), AFM

• Non-Contact

12

– Passive• Shape-from-X

– Stereo

– Multiview

– Silhouettes

– Focus/Defocus

– Active• Transmissive

– Computed Tomography (CT)

– Transmissive Ultrasound

• Reflective– Non-Optical Methods

» reflective ultrasound, radar, sonar, MRI

– Time-of-Flight

– Triangulation

» laser striping

» structured lighting

– Photometric Stereo

R. Pintus – CRS4/ViC, October 2012

Taxonomy Taxonomy –– StereoStereo

13

R. Pintus – CRS4/ViC, October 2012

Taxonomy Taxonomy –– StereoStereo

14

R. Pintus – CRS4/ViC, October 2012

Taxonomy (nonTaxonomy (non--destructive)destructive)

• Contact– Direct Measurements

• rulers, calipers, pantographs, coordinate measuring machines (CMM), AFM

• Non-Contact

15

– Passive• Shape-from-X

– Stereo

– Multiview

– Silhouettes

– Focus/Defocus

– Active• Transmissive

– Computed Tomography (CT)

– Transmissive Ultrasound

• Reflective– Non-Optical Methods

» reflective ultrasound, radar, sonar, MRI

– Time-of-Flight

– Triangulation

» laser striping

» structured lighting

– Photometric Stereo

R. Pintus – CRS4/ViC, October 2012

Taxonomy Taxonomy –– MultiviewMultiview

16

R. Pintus – CRS4/ViC, October 2012

Taxonomy Taxonomy –– MultiviewMultiview

17

R. Pintus – CRS4/ViC, October 2012

Taxonomy (nonTaxonomy (non--destructive)destructive)

• Contact– Direct Measurements

• rulers, calipers, pantographs, coordinate measuring machines (CMM), AFM

• Non-Contact

18

– Passive• Shape-from-X

– Stereo

– Multiview

– Silhouettes

– Focus/Defocus

– Active• Transmissive

– Computed Tomography (CT)

– Transmissive Ultrasound

• Reflective– Non-Optical Methods

» reflective ultrasound, radar, sonar, MRI

– Time-of-Flight

– Triangulation

» laser striping

» structured lighting

– Photometric Stereo

R. Pintus – CRS4/ViC, October 2012

Taxonomy Taxonomy –– SilhouettesSilhouettes

19

R. Pintus – CRS4/ViC, October 2012

Taxonomy (nonTaxonomy (non--destructive)destructive)

• Contact– Direct Measurements

• rulers, calipers, pantographs, coordinate measuring machines (CMM), AFM

• Non-Contact

20

– Passive• Shape-from-X

– Stereo

– Multiview

– Silhouettes

– Focus/Defocus

– Active• Transmissive

– Computed Tomography (CT)

– Transmissive Ultrasound

• Reflective– Non-Optical Methods

» reflective ultrasound, radar, sonar, MRI

– Time-of-Flight

– Triangulation

» laser striping

» structured lighting

– Photometric Stereo

R. Pintus – CRS4/ViC, October 2012

Taxonomy Taxonomy –– Depth from Depth from focus/defocusfocus/defocus

21

R. Pintus – CRS4/ViC, October 2012

Taxonomy (nonTaxonomy (non--destructive)destructive)

• Contact– Direct Measurements

• rulers, calipers, pantographs, coordinate measuring machines (CMM), AFM

• Non-Contact

22

– Passive• Shape-from-X

– Stereo

– Multiview

– Silhouettes

– Focus/Defocus

– Active• Transmissive

– Computed Tomography (CT)

– Transmissive Ultrasound

• Reflective– Non-Optical Methods

» reflective ultrasound, radar, sonar, MRI

– Time-of-Flight

– Triangulation

» laser striping

» structured lighting

– Photometric Stereo

R. Pintus – CRS4/ViC, October 2012

Taxonomy Taxonomy –– TransmissiveTransmissive

Computed Tomography

23

Density Function

Trasmissive Ultrasound

R. Pintus – CRS4/ViC, October 2012

Taxonomy (nonTaxonomy (non--destructive)destructive)

• Contact– Direct Measurements

• rulers, calipers, pantographs, coordinate measuring machines (CMM), AFM

• Non-Contact

24

– Passive• Shape-from-X

– Stereo

– Multiview

– Silhouettes

– Focus/Defocus

– Active• Transmissive

– Computed Tomography (CT)

– Transmissive Ultrasound

• Reflective– Non-Optical Methods

» reflective ultrasound, radar, sonar, MRI

– Time-of-Flight

– Triangulation

» laser striping

» structured lighting

– Photometric Stereo

R. Pintus – CRS4/ViC, October 2012

Taxonomy Taxonomy –– NonNon--OpticalOptical

25

Ultrasound Radar MRI

R. Pintus – CRS4/ViC, October 2012

Taxonomy (nonTaxonomy (non--destructive)destructive)

• Contact– Direct Measurements

• rulers, calipers, pantographs, coordinate measuring machines (CMM), AFM

• Non-Contact

26

– Passive• Shape-from-X

– Stereo

– Multiview

– Silhouettes

– Focus/Defocus

– Active• Transmissive

– Computed Tomography (CT)

– Transmissive Ultrasound

• Reflective– Non-Optical Methods

» reflective ultrasound, radar, sonar, MRI

– Time-of-Flight

– Triangulation

» laser striping

» structured lighting

– Photometric Stereo

R. Pintus – CRS4/ViC, October 2012

Taxonomy Taxonomy –– TimeTime--ofof--FlightFlight

27

nssm

m

c

dt 17

103

0.528 ≈

×==

R. Pintus – CRS4/ViC, October 2012

Taxonomy (nonTaxonomy (non--destructive)destructive)

• Contact– Direct Measurements

• rulers, calipers, pantographs, coordinate measuring machines (CMM), AFM

• Non-Contact

28

– Passive• Shape-from-X

– Stereo

– Multiview

– Silhouettes

– Focus/Defocus

– Active• Transmissive

– Computed Tomography (CT)

– Transmissive Ultrasound

• Reflective– Non-Optical Methods

» reflective ultrasound, radar, sonar, MRI

– Time-of-Flight

– Triangulation

» laser striping

» structured lighting

– Photometric Stereo

R. Pintus – CRS4/ViC, October 2012

Taxonomy Taxonomy –– Laser StripingLaser Striping

29

R. Pintus – CRS4/ViC, October 2012

Taxonomy (nonTaxonomy (non--destructive)destructive)

• Contact– Direct Measurements

• rulers, calipers, pantographs, coordinate measuring machines (CMM), AFM

• Non-Contact

30

– Passive• Shape-from-X

– Stereo

– Multiview

– Silhouettes

– Focus/Defocus

– Active• Transmissive

– Computed Tomography (CT)

– Transmissive Ultrasound

• Reflective– Non-Optical Methods

» reflective ultrasound, radar, sonar, MRI

– Time-of-Flight

– Triangulation

» laser striping

» structured lighting

– Photometric Stereo

R. Pintus – CRS4/ViC, October 2012

Taxonomy Taxonomy –– Structured LightingStructured Lighting

31

R. Pintus – CRS4/ViC, October 2012

Taxonomy (nonTaxonomy (non--destructive)destructive)

• Contact– Direct Measurements

• rulers, calipers, pantographs, coordinate measuring machines (CMM), AFM

• Non-Contact

32

– Passive• Shape-from-X

– Stereo

– Multiview

– Silhouettes

– Focus/Defocus

– Active• Transmissive

– Computed Tomography (CT)

– Transmissive Ultrasound

• Reflective– Non-Optical Methods

» reflective ultrasound, radar, sonar, MRI

– Time-of-Flight

– Triangulation

» laser striping

» structured lighting

– Photometric Stereo

R. Pintus – CRS4/ViC, October 2012

Taxonomy Taxonomy –– Photometric StereoPhotometric Stereo

33

R. Pintus – CRS4/ViC, October 2012

Photometric Stereo Photometric Stereo –– SEMSEM

34

R. Pintus – CRS4/ViC, October 2012

Taxonomy Taxonomy –– Photometric StereoPhotometric Stereo

35

R. Pintus – CRS4/ViC, October 2012

Taxonomy SEMTaxonomy SEM

• Contact– Direct Measurements

• rulers, calipers, pantographs, coordinate measuring machines (CMM), AFM

• Non-Contact

36

– Passive• Shape-from-X

– Stereo

– Multiview

– Silhouettes

– Focus/Defocus

– Active• Transmissive

– Computed Tomography (CT)

– Transmissive Ultrasound

• Reflective– Non-Optical Methods

» reflective ultrasound, radar, sonar, MRI

– Time-of-Flight

– Triangulation

» laser striping

» structured lighting

– Photometric Stereo

R. Pintus – CRS4/ViC, October 2012

Cultural HeritageCultural Heritage

• Techniques– Triangulation (laser scanner)

– Time of Flight

– Texture Mapping

– Multi-view reconstruction

– Photometric Stereo

37

– Photometric Stereo

• Deal with multiple acquisitions

• Manage a huge amount of data for visualization purposes

R. Pintus – CRS4/ViC, October 2012

3D Reconstruction Pipeline3D Reconstruction PipelineReal Object Acquisition Devices

Photos

38

3D Digital Model

=== Processing ===-Cleaning- Merging

- Photo Alignment- Color Projection

- …

Geometry

R. Pintus – CRS4/ViC, October 2012

3D Reconstruction Pipeline3D Reconstruction Pipeline

• Real Model Inspection (onsite)

• Scans design (offsite/onsite)

• Acquisition (onsite)

• Alignment (offsite)

39

• Editing (offsite)

• Merge (offsite)

• Texture (offsite)

• Final Model (offsite)

• 3D Printing (offsite)

R. Pintus – CRS4/ViC, October 2012

3D Reconstruction Pipeline3D Reconstruction Pipeline

• Real Model Inspection (onsite)

• Scans design (offsite/onsite)

• Acquisition (onsite)

• Alignment (offsite)

40

• Editing (offsite)

• Merge (offsite)

• Texture (offsite)

• Final Model (offsite)

• 3D Printing (offsite)

R. Pintus – CRS4/ViC, October 2012

GoalGoal

• Fast and low-cost technique for creating accurate colored models

• Acquisition – 3D – laser scanners

– Color – digital cameras– Color – digital cameras

• Mapping photo-to-geometry– Fast and Robust Semi-Automatic Registration of Photographs

to 3D Geometry

• Photo blending– A Streaming Framework for Seamless Detailed Photo

Blending on Massive Point Clouds

www.crs4.it/vic/

Photo MappingPhoto MappingPhoto MappingPhoto Mapping

Ruggero Pintus, Enrico Gobbetti, and Roberto Combet. “Fast and Robust Semi-Automatic Registration of Photographs to 3D Geometry”. In The 12th International Symposium on Virtual Reality, Archaeology and Cultural Heritage, October 2011.

R. Pintus – CRS4/ViC, October 2012

Problem StatementProblem Statement

3D Geometry Unordered SetOf n Uncalibrated

Photos

n Camera Poses(2D/3D Registration)

R. Pintus – CRS4/ViC, October 2012

Related workRelated work

• Manual selection of 2D-3D matches– Massive user intervention – Tiring and time-consuming

• Automatic feature matching– Not robust enough for a generic dataset

• Semi-automatic statistical correlation• Semi-automatic statistical correlation– Point cloud attributes not always provided

• Geometric multi-view reconstruction– 2D-3D problem � 3D-3D registration task

– dense and ordered frame sequence

• Our contribution– Minimize user intervention / Large datasets / Semi-

automatic / Multi-view based approach / No Attributes

R. Pintus – CRS4/ViC, October 2012

Input DataInput Data

• Dense Geometry– Point cloud, triangle

mesh, etc.

– No attributes

– No particular features

User

SfM Reconstruction

Dense 3D n Photos

– No particular features

• n photos– Naïve constraints:

• Blur, Noise, Under- or over-exposured

– Sufficient overlap

Coarse Registration

Refinement

Output Data

R. Pintus – CRS4/ViC, October 2012

MultiMulti--viewview

• Bundler [Snavely et al. 2006]– SfM system for unordered

image collections

– http://phototour.cs.washington.edu/bundler/

User

SfM Reconstruction

Dense 3D n Photos

n.edu/bundler/

• Output– A sparse point cloud

– n camera poses

– SIFT keypoints (projections of sparse 3D points)

Coarse Registration

Refinement

Output Data

R. Pintus – CRS4/ViC, October 2012

Coarse registrationCoarse registration

• Register two point clouds with different:

– scales

– reference frames

– resolutions

• Automatic methods are not

User

SfM Reconstruction

Dense 3D n Photos

• Automatic methods are not robust and efficient enough

• User aligns few images (one or more) to the dense geometry

• Affine transformation is applied to all cameras and sparse points

Coarse Registration

Refinement

Output Data

R. Pintus – CRS4/ViC, October 2012

RefinementRefinement

User

SfM Reconstruction

Dense 3D n Photos1C

jpjs ,1

js ,2

( )jpCQ ,2

jP

( )jF pNN

Coarse Registration

Refinement

Output Data

2C

js ,2

( )( )jF pNNCQ ,2

( ) ( )( )∑∑= =

−=P CN

j

N

ijijFiij spNNCQvPCE

1 1

2

,,,

R. Pintus – CRS4/ViC, October 2012

RefinementRefinement

• Sparse Bundle Adjustment (SBA)– Constants – SIFT keypoints,

dense 3D points

– Variables – Camera poses, sparse 3D points

User

SfM Reconstruction

Dense 3D n Photos

sparse 3D points

– SBA

• A Generic SBA C/C++ Package Based on the Levenberg-Marquardt Algorithm

• http://www.ics.forth.gr/~lourakis/sba/

Coarse Registration

Refinement

Output Data

R. Pintus – CRS4/ViC, October 2012

Output dataOutput data

• n camera poses

• Input of photo blending

User

SfM Reconstruction

Dense 3D n Photos

blending– n photos

– n camera poses

– Dense 3D geometry

Coarse Registration

Refinement

Output Data

R. Pintus – CRS4/ViC, October 2012

Results Results –– Photo mappingPhoto mapping

www.crs4.it/vic/

Photo BlendingPhoto BlendingPhoto BlendingPhoto Blending

Ruggero Pintus, Enrico Gobbetti, and Marco Callieri. A Streaming Framework for Seamless Detailed Photo Blending on Massive Point Clouds. In Proc. Eurographics Area Papers. Pages 25- 32, 2011.

R. Pintus – CRS4/ViC, October 2012

Problem StatementProblem Statement

Point Cloud CalibratedPhotos

R. Pintus – CRS4/ViC, October 2012

Problem StatementProblem Statement

Point Cloud CalibratedPhotos

P

R. Pintus – CRS4/ViC, October 2012

Problem StatementProblem Statement

Point Cloud CalibratedPhotos

P

ColoredPoint Cloud

R. Pintus – CRS4/ViC, October 2012

Problem StatementProblem Statement

Point Cloud CalibratedPhotos

P

ColoredPoint Cloud

• Problem ���� Unlimited size of 3D model (Gpoints) and unlimited number of images

R. Pintus – CRS4/ViC, October 2012

Related workRelated work

• State-of-the-art techniques

– Image quality estimation

– Stitching or blending

• Data representation

– Triangle meshes – exploit connectivity

– Meshless approaches– Meshless approaches

• Both triangle meshes and point clouds

• Memory settings

– All in-core – no massive geometry/images

– 3D in-core and images out-of-core – no massive geometry

– All out-of-core – Low performances

• Our contribution– Blending function / Streaming framework / Massive point cloud /

Adaptive geometry refinement

R. Pintus – CRS4/ViC, October 2012

PipelinePipeline

Photo StencilPer-pixelWeight

MaskedPer-pixelWeight

R. Pintus – CRS4/ViC, October 2012

Simple blendingSimple blending

R. Pintus – CRS4/ViC, October 2012

Edge extraction and Distance Edge extraction and Distance TransformTransform

R. Pintus – CRS4/ViC, October 2012

Smooth weightSmooth weight

R. Pintus – CRS4/ViC, October 2012

Smooth weightSmooth weight

R. Pintus – CRS4/ViC, October 2012

Single band blendingSingle band blending

R. Pintus – CRS4/ViC, October 2012

Multi band blendingMulti band blending

R. Pintus – CRS4/ViC, October 2012

Adaptive point refinementAdaptive point refinement

R. Pintus – CRS4/ViC, October 2012

Adaptive point refinementAdaptive point refinement

R. Pintus – CRS4/ViC, October 2012

Adaptive point refinementAdaptive point refinement

R. Pintus – CRS4/ViC, October 2012

Adaptive point refinementAdaptive point refinement

R. Pintus – CRS4/ViC, October 2012

ResultsResults

• Callieri et. al 2008 – David 28M

– Disk space occupancy –6.2GB

– Computation time – 15.5 hours

David470Mpoints

– Computation time – 15.5 hours

R. Pintus – CRS4/ViC, October 2012

Results Results –– Church’s ApseChurch’s Apse

14 Mpoint Geometry 40 photos

R. Pintus – CRS4/ViC, October 2012

Results Results –– Church’s ApseChurch’s Apse

R. Pintus – CRS4/ViC, October 2012

Results Results –– Grave Grave

8 Mpoint Geometry21 photos

R. Pintus – CRS4/ViC, October 2012

Results Results –– Grave Grave

R. Pintus – CRS4/ViC, October 2012

ResultsResults

R. Pintus – CRS4/ViC, October 2012

ResultsResults

R. Pintus – CRS4/ViC, October 2012

ResultsResults

David470Mpoints470Mpoints

Image size – 19456x532481Gpixel

R. Pintus – CRS4/ViC, October 2012

ResultsResults

R. Pintus – CRS4/ViC, October 2012

ConclusionConclusion

• Image-to-geometry registration approach

• Minimum user intervention

• No constraints on geometry, attributes and features

• Specific robust cost function and SBA

• Out-of-core photo blending approach (Point clouds of unlimited size)

• Incremental color accumulation (Unlimited number of images)• Incremental color accumulation (Unlimited number of images)

• Smooth weight function (Seamless color blending)

• Streaming framework (Performance improvement)

• Adaptive point refinement

• Future work

– Automatic sparse-to-dense geometry registration

– Interactive blending - adding and removing images in an interactive tool

– Fast visual check of previous alignment step

R. Pintus – CRS4/ViC, October 2012

ConclusionConclusion

• Low cost

– Personal computer

– Digital camera

– Decreased manual intervention

• Open Source / Free Software

– Bundler – SfM reconstruction –http://phototour.cs.washington.edu/bundler/http://phototour.cs.washington.edu/bundler/

– Sparse Bundle Adjustment – SBA – Minimization –http://www.ics.forth.gr/~lourakis/sba/

– Opengl / GLSL shaders – Rendering – http://www.opengl.org/

– Qt – Interface – http://qt.nokia.com/

– Opencv – Manual registration – http://opencv.willowgarage.com/wiki/

– Spaceland Library – Geometric computation –http://spacelib.sourceforge.net/

– IIPImage – Web-based Viewer – http://iipimage.sourceforge.net/

R. Pintus – CRS4/ViC, October 2012

3D Printing3D Printing

80

R. Pintus – CRS4/ViC, October 2012

Printing ProcessPrinting Process

• Original model

• Slice representation

81

representation

• Layer by layer deposition

• Cleaning

• Printed model

R. Pintus – CRS4/ViC, October 2012

Printing ProcessPrinting Process

• Original model

• Slice representation

82

representation

• Layer by layer deposition

• Cleaning

• Printed model

R. Pintus – CRS4/ViC, October 2012

Printing ProcessPrinting Process

• Original model

• Slice representation

83

representation

• Layer by layer deposition

• Cleaning

• Printed model

R. Pintus – CRS4/ViC, October 2012

Printing ProcessPrinting Process

• Original model

• Slice representation

84

representation

• Layer by layer deposition

• Cleaning

• Printed model

R. Pintus – CRS4/ViC, October 2012

Printing ProcessPrinting Process

• Original model

• Slice representation

85

representation

• Layer by layer deposition

• Cleaning

• Printed model

R. Pintus – CRS4/ViC, October 2012

Geometry processingGeometry processing

86

R. Pintus – CRS4/ViC, October 2012

Geometry processingGeometry processing

87

R. Pintus – CRS4/ViC, October 2012

Geometry processingGeometry processing

88

R. Pintus – CRS4/ViC, October 2012

SubSub--surface scatteringsurface scattering

89

R. Pintus – CRS4/ViC, October 2012

Color Color enhancementenhancement

90

R. Pintus – CRS4/ViC, October 2012

Color Color enhancementenhancement

91

R. Pintus – CRS4/ViC, October 2012

Color Color enhancementenhancement

92

R. Pintus – CRS4/ViC, October 2012

ConclusioniConclusioni

• Lavorare su dati misurati è un pre-requisito di molti lavori (tutti?) nel contesto dei beni culturali– Applicazioni specialistiche o per grande pubblico

• Le moderne tecnologie di acquisizione • Le moderne tecnologie di acquisizione consentono di acquisire una grande quantità di informazioni (forma e colore)– Laser scanning, camere digitali, ecc.

• Uso potenziale vasto!– Valorizzazione, restauro, studio, ecc.

R. Pintus – CRS4/ViC, October 2012

ConclusioniConclusioni

• Queste quantità di dati sono però difficili da trattare, archiviare, distribuire, visualizzare– Scalabilità!

• Tecniche attuali sub-ottimali• Tecniche attuali sub-ottimali– Costi, tempi, qualità

R. Pintus – CRS4/ViC, October 2012

ConclusioniConclusioni

• Il CRS4 è impegnato in attività di ricerca per migliorare le tecnologie…– Stato dell’arte internazionale

– Collaborazioni e ricadute locali

• PMI, Contro Restauro SS, Soprintendenze, CNR, UniCA• PMI, Contro Restauro SS, Soprintendenze, CNR, UniCA

• … e per applicarle a casi concreti– Collaborazioni multidisciplinari!

R. Pintus – CRS4/ViC, October 2012

ConclusioniConclusioni

96

R. Pintus – CRS4/ViC, October 2012

Questions & ContactsQuestions & Contacts

• CRS4 – VIC www.crs4.it/vic/

• Ruggero Pintus • Ruggero Pintus ruggero@crs4.it