+ All Categories
Home > Documents > Attività Sperimentali in Corso su Raggi Cosmici nello...

Attività Sperimentali in Corso su Raggi Cosmici nello...

Date post: 21-Jan-2020
Category:
Upload: others
View: 2 times
Download: 0 times
Share this document with a friend
74
Attività S perimentali in C orso su R aggi C osmici nello Spazio Mirko Boezio INFN Trieste, Italy Commissione Scientifica Nazionale 2 9 Aprile 2013
Transcript

Attività Sperimentali in Corso suRaggi Cosmici nello Spazio

Mirko BoezioINFN Trieste, Italy

Commissione Scientifica Nazionale 29 Aprile 2013

• Siti/meccanismi di accelerazione dei raggi cosmici• Propagazione nella galassia e spettri energetici• Elettroni• Ricerca indiretta di materia oscura ed

antimateria• UHECR

Desidero ringraziare i responsabili degli esperimenti, sia INFN che altri, per aver fornito le slides con l’aggiornamento  dei risultati o  lo  stato  dell’arte  degli esperimenti.

An Overview

Esperimenti Linea 4Esperimenti Obiettivi Stato

AGILE Astrofisica Gamma:30 MeV – 50 GeV

In presa dati dal 2007. Non piu finanziato INFN

AMS-02 CR carichi:500 MeV – 2 TeV

In presa dati dal 2011.

Fermi Astrofisica Gamma/CR carichi: 100 MeV – 300 GeV/7 GeV – ~1 TeV

In presa dati dal 2008.

DAMPE Astrofisica Gamma/CR carichi: GeV – 10 TeV

Previsto su stazionespaziale cinese 2015. Da approvare INFN.

GAMMA-400-RD Astrofisica Gamma/CR carichi: 30 MeV – 3 TeV/GeV – PeV

Lancio previsto 2018. Approvato Russia, approvato come RD INFN.

JEM-EUSO-RD CR: >5x1019 eV Previsto su ISS 2017.WIZARD CR carichi:

50 MeV – 1 TeVIn presa dati dal 2006.

P. Blasi, TeVPA 2011, Stockholm 2011

Vita dei Raggi CosmiciT1 T2

Accelerazione e Sorgenti

Cortesy of E. Amato & P. Blasi

Cortesy of E. Amato & P. Blasi

Spectra

Preliminary

Index ~ 2.1 – 2.2Little variation across SNRCutoff or break at high energy

� Acceleration ofprimary particlesin SNR shock towell beyond 100 TeV

TeV image by HESS (Aharonian et al. 2007)

Spectrum by Fermi-LAT (Abdo et al. 2011)

GeV image by Fermi-LAT (Abdo et al. 2011)

LEPTONIC EMISSION !

EXAMPLE: SNR RXJ1713.7-3946 TeV is not enough

Π0-dominant

Mixed Π0/IC

Inverse ComptonB-Field a 10 PG

AGILE intensity map, smoothing3E: 400-10000VLA contours (green)

NANTEN2 CO map41 km/s (green), 43 km/s (blue)AGILE 400-10000 cont. (magenta)VLA contours (white)

AGILE discovery of pion emissionfrom the SNR W44

W44: AGILE data (Giuliani A. et al., ApJ Letters, 742, L30, 2011)

Fermi: CR protons in SNR

16Detection of the pion-decay cutoff in Supernova remnants2013, Science, 339, 807

Fermi: Pass8 improvements• Current Pass8 development has major advances in

– CAL recon: multiple clusters + new full 3D shower profile recon to extend up to ~3TeV

– TKR recon: improved pat-rec to reduce PSF tails• Development heavily relies on LAT MC and data/MC agreement with

flight datasets

18

arxiv 1303.3514

Cosa Viene Accelerato

Trans-Iron Galactic Element RecorderTwo balloon flights over Antarctica:• December 2001 (32 days);• December 2003 (18 days)

New ballon/borne experiment(Super-TIGER) withsignificantly larger acceptance(2.5m2sr) flew in 09-Dec-2012 –01-Feb-2013

Rauch et al., ApJ 697 (2009) 2083

10 20 30 40 50 60 70 80 90100

0.1

1

Volatile Refractory

GC

RS

/(8

0%

SS

+2

0%

MS

O)

Atomic Mass

Mg

Al

Si

P

Ca Fe

Co

Ni

Sr

NNe

S Ar Cu

Zn

Ga

Ge

Se

Refractories

Volatiles

6.9.10_Figure_for_MHI/TIG_GCRS_vs_80-20mix_rev2

Rauch et al. ApJ 697, 2083 (2009)

Ahn et al. ApJ 715, 1400 (2010)

Compare GCR source abundances with a mixture of 80% SS (Lodders) and 20% Massive Star Outflow (Woosley & Heger, Phys. Rep. 442 (2007) 269).

• Elements present in interstellar grains are accelerated more effectively than those found in the interstellar gas

•  Data  are  consistent  with  the  idea  that  OB  associations are the most probable source of at least a substantial fraction of CR

Spettri in Energia dei Raggi Cosmici

Accelerazione e propagazionedei raggi cosmici nella galassia

Proton and Helium Nuclei Spectra

Sola

r mod

ulat

ion

H & He absolute fluxes @ high energy

Deviations from single power law (SPL):

�Spectra gradually soften in the range 30÷230GV�Spectral hardening @ R~235GV 'J~0.2÷0.3

SPL is rejected at 98% CL

Origin of the structures?- At the sources: multi-

populations, etc.?- Propagation effects?

(e.g. P. Blasi et al., Phys.Rev.Lett. 109 (2012) 061101

Sola

r mod

ulat

ion

Sola

r mod

ulat

ion

2.852.67

232 GV

Spectral index 2.772.48

243 GV

H He

O. Adriani et al., Science 332 (2011) 69Mirko Boezio, ICTP Trieste, 2012/11/19

CR PROPAGATION

C.R.E.A.M. (Ahn et al. 08)

Ge=1/3

Ge=0.7

Ge=0.6

SECONDARY TO PRIMARY RATIOS0.3<Ge<0.7

Jo= Je+Ge � Je|2-2.4

��

WESC |H2

D E� �vE-G e

��

NSEC E� �|N E� ��SPWESC vE-J inj�2G e

DISKHALO

H 2h

��

N E� �| Ns E� ��2SRd

2HWESC vE

�J inj �G e

E. Amato , APS April Meeting, Atlanta 2012

Detector Systems in CREAM-1

• TCD: Timing Charge Detector9 Trigger and Charge

• TRD: Transition RadiationDetector

9 Tracking 9 Lorentz Factor for Z t 3

CER: Cherenkov Detector–Charge/Velocity for Z t 3

calorimetermodule

E. S. Seo, Indirect and Direct Detection of Dark Matter, Aspen February 2011

Particle Spectra

E. S. Seo, Indirect and Direct Detection of Dark Matter, Aspen February 2011

From CREAM to ISS-CREAM

• The International Space Station (ISS) is nearly ideal for our quest to investigate the low fluxes of high-energy cosmic rays.

• The CREAM instrument will be re-packaged for accommodation on NASA’‛s share of the Japanese Experiment Module Exposed Facility (JEM-EF).

• This “ISS-CREAM” mission is planned for launch in 2014.

CREAM

Increase the exposure by an order of magnitude

(CREAM for the ISS)

Eun-Suk Seo

ISS-CREAM Instrument

CREAM

SCD

BCD BSD

4 layer Silicon Charge Detector- Precise charge measurements- 380-µm thick 2.12 cm2 pixels- 79 cm x 79 cm active detector area

Carbon Targets (0.5 Oint ) induces hadronic interactions

TCD

C-targets

CAL

Calorimeter (20 layers W + Scn Fibers)- Determine Energy - Provide tracking- Provide Trigger

Top & Bottom Counting Detectors- Each with 20 x

20 photodiodes and a plastic scitillator for e/p separation

- Independent Trigger

BoronatedScintillator Detector - Additional e/p

separation- Neutron

signals

Eun-Suk Seo

Gamma-400 Mission

Gamma-400: Calorimeter Geometry

• Homogeneous calorimeter• Symmetric, to maximize the

Geometric Factor: 100x100x52 cm3

(50X0x50X0x26X0)• Total weight ~ 1800 kg• Very high dynamic range• Finely segmented in every

direction1 RM x 1 RM x 1 RM small

CSI crystals, cubic shape• Few mm gap between crystals

Gamma-400: Nuclei

GAMMA-400

Experiment

Duration

Planar GF(m2

sr)

H selCalo V(E)/E

Calo depth

E > 0.1 PeV E > 0.5 PeV E > 1 PeV E > 2 PeV E > 4 PeV

H conv p He p He p He p He p He

CALET 5 y 0,120,8

~40% 30 X01,3 O0

146 138 9 10 2 3 1 1 0 00,5

CREAM 180 d 0,430,8

~45% 20 X01,2 O0

41 39 3 3 1 1 0 0 0 00,4 CT*

ATIC 30 d 0,250,8

~37% 18 X01,6 O0

5 5 0 0 0 0 0 0 0 00,5 CT*

G400 10 y 8,50,8

~17% 39 X01,8 O0

16521 15624 979 1083 261 326 60 92 10 210,4

~ knee

Counts estimation, protons and helium nuclei

* carbon target

Polygonato modelG400 configuration: CsI(Tl), 20x20x20 crystals

Size: 78.0x78.0x78.0 cm3 – gap 0.3 cmTaking into account: geometrical factor and exp. duration + selection

efficiency 80%

Elettroni

Electron Observations• High energy electrons have a high energy loss rate v E2

– Lifetime of ~105 years for >1 TeV electrons• Transport of GCR through interstellar space is a diffusive

process– Implies that source of high energy electrons are < 1 kpc

away

Electrons are accelerated in SNR (as seen in J-rays)

Only a handful of SNR meet the lifetime & distance criteria

Kobayashi et al (2004) calculations show structure in electron spectrum at high energy

FERMI all Electron Spectrum

A. Abdo et al., Phys.Rev.Lett. 102 (2009) 181101M. Ackermann et al., Phys. Rev. D 82, 092004 (2010)

PAMELA&Fermi electron (e-) spectrum

e+ + e-

e-

Mirko Boezio, SLAC, 2013/03/06

Astrophysical Explanation:Pulsars

• Mechanism: the spinning B of the pulsar strips e- that accelerated at the polar cap or at the outer gap emitJ that make production of e± that are trapped in the cloud, further accelerated and later released at τ ~ 105 years.

• Young (T < 105 years) and nearby (< 1kpc)

• If not: too much diffusion, low energy, too low flux.

• Geminga: 157 parsecs from Earth and 370,000 years old

• B0656+14: 290 parsecs from Earth and 110,000 years old.

• Diffuse mature pulsars

CRAB NEBULA

Some structure in the curve should eventually be seen for pulsars? (D. Grasso et al., Astropart. Phys. 32, 140, 2009).

Pulsar Explanation

D. Malyshev, I. Cholis and J. Gelfand, PRD 80 (2009) 063005

Fermi: A new picture for pulsars• Emission mechanism away from star• Many J-ray only PSR• ms PSR in J-ray

– Pulsar timing array• ms PSR in globular clusters

Pletsch, H. J. et al. 2012, ApJ, 744, 105Saz Parkinson, P. M. et al. 2010, ApJ, 725, 571Abdo, A. A. et al. 2010, ApJS, 187, 460Abdo, A. A. et al. 2009, Science, 325, 840Abdo, A. A. et al. 2009, Science, 325, 845Abdo, A. A. et al. 2009, Science, 325, 848Abdo, A. A. et al. 2008, Science, 322, 1218….  plus  many  other2013 AAS/HEAD Rossi Prize

Science Objectives Observation Targets (5 years)Nearby Cosmic-ray Sources Electron spectrum in trans-TeV region

Dark Matter Signatures in electron/gamma energy spectra in 10 GeV – 10 TeV region

Origin and Acceleration of Cosmic Rays

Proton spectrum to ≈ 1000 TeV, spectra of C,O,Ne,Mg,Si to ≈ 20 TeV/n; Fe spectrum to ≈ 10 TeV/nUltra-Heavy Ions (26 < Z ≤ 40) E > 600 MeV/n

Cosmic –ray Propagation in the Galaxy B/C ratio up to several TeV /nucleonSolar Physics Electron flux below 10 GeVGamma-ray Transients X-rays/Gamma-rays in 7 keV – 20 MeV

z Nominal Orbit: 407 km, 51.6o inclination

z Launch carrier / plan:HTV-5 / mid 2014

z Mission Lifetime:≥  5  years

� Mass: 650kg (Max)� Standard Payload Size� Power: 500W (Max)

CALETHigh Energy Electron

and Gamma-Ray Telescope

JEM/EF ( Exposure Facility on ISS)

CALET Instrument450 mm

Shower particles

CHD(Charge Detector)

IMC(Imaging Calorimeter)

TASC(Total AbsorptionCalorimeter)

Function Charge Measurement (Z=1-40) Arrival Direction, Particle ID Energy Measurement, Particle ID

Sensor(+ Absorber)

Plastic Scintillator : 2 layersUnit Size: 32mm x 10mm x 450mm

SciFi : 16 layersUnit size: 1mm2 x 448 mm

Total thickness of Tungsten: 3 X0

PWO log: 12 layersUnit size: 19mm x 20mm x 326mmTotal Thickness of PWO: 27 X0

Readout PMT+CSA 64 -anode PMT+ ASIC APD/PD+CSAPMT+CSA ( for Trigger)

Expected Performance( from Simulations and/or Beam Tests)

• Geometric Factor:1200 cm2sr for electrons, light nuclei1000 cm2sr for gamma-rays4000 cm2sr for ultra-heavy nuclei

• ΔE/E : ~2% (>10 GeV) for e,γ’s~30 % for protons

• e/p separation : 10-5

• Charge resolution : 0.15 - 0.3 e• Angular resolution :

0.1° for gamma-rays > ~50 GeV

- 48 -

48

Is there a nearby (< 1 kpc) acceleration source?

¾ CALET will explore the spectral shape beyond 1 TeVwith:

- Low proton background (105 rejection) achievable thanks to:

• Calorimeter depth for e.m. showers (30 X0)• High granularity of IMC pre-shower

- Excellent energy resolution (2 %) from PWO crystals

¾ CALET will perform Anisotropy measurements to validate possible evidence of nearby source(s)

Nearby Pulsar(s)or

Dark Matter ?

Vela10,000 years820 ly(by CHANDRA)

- 48Example: simulated e++e- spectrum for a decay channel of D.M.-> l+l-Qwithm = 2.5TeV and W = 2.1x1026 s

¾ Search for structures in the inclusive electron spectrum with high energy resolution

CREST

CREST

G400 configuration: CsI(Tl), 20x20x20 crystalsSize: 78.0x78.0x78.0 cm3 – gap 0.3 cm

Taking into account: geometrical factor and exp. duration + selection efficiency 80%

Experiment Duration

Planar GF (m2 sr)

Calo V(E)/E

Calo depth

e/p rejection

factorE > 0.5 TeV E > 1 TeV E > 2 TeV E > 4 TeV

CALET 5 y 0,12 ~2% 30 X0 105 3193 611 95 10

AMS02 10 y 0,5** ~2% 16 X0 103 ** 26606 5091 794 84

ATIC 30 d 0,25 ~2% 18 X0 104 109 21 3 0

FERMI 10 y

1,6@300 GeV *

0,6@800 GeV *

~15% 8,6 X0 104 59864 2545 0 0

G400 10 y 8,5 ~0,9% 39 X0 106 452303 86540 13502 1436

* efficiencies included ** calorimeter standalone

GAMMA-400 count estimation: electrons

The detector is consisted of 4 parts:Top scintillators (charge measurement)Si tracker (5 layers)BGO calorimeterNeutron detector

Comparison of Detector Performance for Electrons

Detector Energy Range(GeV)

Energy Resolution

e/p Selection Power

Key Instrument(Thickness of CAL)

SΩT(m2srday)

ATIC1+2(+ ATIC4)

10 -a few 1000

<3%( >100 GeV)

~10,000 Thick Seg. CAL (BGO: 22 X0)+ C Targets

3.08

PAMELA 1-700 5%@200 GeV

105 Magnet+IMC(W:16 X0)

~1.4(2 years)

FERMI-LAT 20-1,000 5-20 %(20-1000

GeV)

103-104

(20-1000GeV)Energy dep. GF

Tracker+ACD+ Thin Seg. CAL

(W:1.5X0+CsI:8.6X0)

60@TeV(1 year)

AMS 1-1,000(Due to Magnet)

~2-4%@100 GeV

104

(x 102 by TRD)Magnet+IMC+TRD+RICH(Lead: 17Xo)

~50(?)(1year)

CALET 1-10,000 ~2-3%(>100 GeV)

~105 IMC+CAL(W: 3 Xo+ PWO : 27 Xo)

44(1years)

DAMPE 1-10,000 ~1%(>100 GeV)

~106 IMC+CAL+Neutron(W: 2 Xo+ BGO: 32 Xo)

180(1 years)

DAMPE is optimized for the electron observation in the tran-TeV region, and the performance is best also in 10-1000 GeV.

Ricerca Indiretta di Materia Oscura ed antiparticelle

DM annihilationsDM particles are stable. They can annihilate in pairs.

Primary annihilation channels Decay Final states

σa= <σv>

Dark Matter J Search StrategiesSatellites

Low background and goodsource id, but low statistics

Galactic CenterGood Statistics, but source confusion/diffuse background

Milky Way HaloLarge statistics, but diffusebackground

Isotropic”  contributionsLarge statistics, but astrophysics, galactic diffuse background

Spectral LinesLittle or no astrophysical uncertainties, goodsource id, but low sensitivity because ofexpected small branching ratio

Dark Matter simulation:Pieri+(2009) arXiv:0908.0195

Galaxy ClustersLow background, but low statistics60

Fermi: No sign of Dark Matter yet

Ackermann, M. et al. 2011, Phys. Rev. Lett., 107, 241302

A. Albert, Fermi Symposium 2012, in preparationAckermann, M. et al. 2012, Phys. Rev. D, 86, 022002

� Search in dwarf spheroidals– Free from astro background– Current limit close to thermal

relic V <~30 GeV– Prospects to constrain WIMP

paradigm within next years

� Line search– No significant

detection– line-like feature in GC

and control samples

Antimatter Missions in “Space”PAMELA

2006-

AMS-022011-

GAPS2017?

BESS LDBF2004, 2007

PEBS2014?

Antiproton Results

Donato et al. (PRL 102 (2009) 071301)

Simon et al. (ApJ 499 (1998) 250) Ptuskin et al. (ApJ 642 (2006) 902)

Cosmic-Ray Antiprotons and DM limits

D. G. Cerdeno, T. Delahaye & J. Lavalle, Nucl. Phys. B 854 (2012) 738Antiproton flux predictions for a 12 GeV WIMP annihilating into different mass combinations of an intermediate two-boson state which further decays into quarks.

See also:• M. Asano, T. Bringmann & C. Weniger, Phys. Lett. B 709 (2012) 128.• M. Garny, A. Ibarra & S. Vogl, JCAP 1204 (2012) 033• R. Kappl & M. W. Winkler, PRD 85 (2012) 123522

Cosmic-Ray Antiprotons and DM limits

M. Cirelli & G. Giesen, arXiv: 1301:7079Antiprotons are a very relevant tool to constrain Dark Matter annihilation and decay, on a par with gamma rays for the hadronicchannels. Current Pamela data and especially upcoming AMS-02 data allow to probe large regions of the parameter space.

PAMELA Positron to Electron Fraction

Preliminary

Mirko Boezio, SLAC, 2013/03/06

Secondary productionMoskalenko & Strong 98

Fermi Positron Fraction

M. Ackermann, Phys.Rev.Lett. 108 (2012) 011103; astro-ph: 1109.0521

AMS Positron to Electron Fraction

Mirko Boezio, SLAC, 2013/03/06

But antiprotons in CRs are in agreement with secondary production

CR Positron spectrum significantly harder than expectations from secondary production

A Challenging Puzzle for CR Physics

Donato et al. (PRL 102 (2009) 071301)Ptuskin et al. (ApJ 642 (2006) 902)

Simon et al. (ApJ 499 (1998) 250)

A Challenging Puzzle for CR Physics

P.Blasi, PRL 103 (2009) 051104; arXiv:0903.2794Positrons (and electrons) produced as secondaries in the sources (e.g. SNR) where CRs are accelerated.

I. Cholis et al., Phys. Rev. D 80 (2009) 123518; arXiv:0811.3641v1

Contribution from DM annihilation.

D. Hooper, P. Blasi, and P. Serpico, JCAP 0901:025,2009; arXiv:0810.1527Contribution from diffuse mature &nearby young pulsars.

Antideuterons

P. Von Doetinchem, UCLA Dark Matter 2012

P. Von Doetinchem, Cosmic Frontier, SLAC 2013

The GAPS Experiment

P. Von Doetinchem, CosmicFrontier, SLAC 2013

Ultra High Energy Cosmic Rays

UHE E > (5-6)×1019 eV

TA

A key result of Auger South and HiRes

A second key result from Auger

Observation of anisotropy of UHE particles at E>5x1019 eV

The Auger Collaboration (2007)

Enables Particle Astronomy

What can originate such cosmic rays?• “Top-Down”  scenario:  Produced by early universe symmetry breaking, decay of cosmic supermassive background particles, violation of Lorentz invariance……

E or MX ≈  1021 eV

Cosmic strings

photons

A jump in exposure is necessary

From 2x104 km2 year sr of AUGER to 106 km2 year sr

To open a new astronomical window and to go beyond the standard model of particle physics and fundamental interactions

Japanese Experiment Module “Kibo” July 2009

きぼう, Hope

51.6°


Recommended