+ All Categories
Home > Documents > Corso di Fisica 3 ONDE E ELETTROMAGNETISMO · funzionamento di specchi, prismi, lenti e dei sistemi...

Corso di Fisica 3 ONDE E ELETTROMAGNETISMO · funzionamento di specchi, prismi, lenti e dei sistemi...

Date post: 18-Feb-2019
Category:
Upload: letuong
View: 218 times
Download: 0 times
Share this document with a friend
122
Corso di Fisica 3 ONDE E ELETTROMAGNETISMO Prof. Andrea Danani DTI- Dipartimento Tecnologie Innovative LaMFI- Laboratorio di Matematica e Fisica applicata Galleria 2, 6928 Manno Anno accademico 2010-2011
Transcript
Page 1: Corso di Fisica 3 ONDE E ELETTROMAGNETISMO · funzionamento di specchi, prismi, lenti e dei sistemi ottici costruiti con essi. In generale, nell’attraversamento di una super cie

Corso di Fisica 3

ONDE E

ELETTROMAGNETISMO

Prof. Andrea Danani

DTI- Dipartimento Tecnologie Innovative

LaMFI- Laboratorio di Matematica e Fisica applicata

Galleria 2, 6928 Manno

Anno accademico 2010-2011

Page 2: Corso di Fisica 3 ONDE E ELETTROMAGNETISMO · funzionamento di specchi, prismi, lenti e dei sistemi ottici costruiti con essi. In generale, nell’attraversamento di una super cie

markright 2

SUPSI-DTI Corso di Fisica e Modellistica Prof. Andrea Danani

Page 3: Corso di Fisica 3 ONDE E ELETTROMAGNETISMO · funzionamento di specchi, prismi, lenti e dei sistemi ottici costruiti con essi. In generale, nell’attraversamento di una super cie

Indice

Indice 3

1 Ottica geometrica 7

1.1 Introduzione . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Legge della riflessione . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Specchi piani . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3.1 Applicazioni di specchi piani: sistemi di specchi piani multipli . 10

1.4 Specchi sferici . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4.1 Riflessione su superficie sferica . . . . . . . . . . . . . . . . . . . 11

1.4.2 Specchi concavi e convessi . . . . . . . . . . . . . . . . . . . . . 11

1.4.3 Nomenclatura e convenzione dei segni . . . . . . . . . . . . . . . 12

1.5 Aberrazione e ottica di Gauss . . . . . . . . . . . . . . . . . . . . . . . 13

1.6 Formula dei punti coniugati . . . . . . . . . . . . . . . . . . . . . . . . 14

1.7 Costruzione grafica di un immagine . . . . . . . . . . . . . . . . . . . . 15

1.8 Ingrandimento e potenza . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.9 Specchi concavi: formazione dell’immagine . . . . . . . . . . . . . . . . 17

1.9.1 Specchi concavi: modalita convergente . . . . . . . . . . . . . . 17

1.9.2 Specchi concavi: modalita divergente . . . . . . . . . . . . . . . 17

1.10 Specchi convessi: formazione dell’immagine . . . . . . . . . . . . . . . . 18

1.11 Caso speciale: specchi piani . . . . . . . . . . . . . . . . . . . . . . . . 19

1.12 Rifrazione: legge di Snell . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.12.1 Illusioni ottiche . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.12.2 Riflessione totale . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.12.3 Riflessione totale: applicazioni . . . . . . . . . . . . . . . . . . . 24

1.12.4 Riflessione totale: effetto fish-eye . . . . . . . . . . . . . . . . . 24

2 Le lenti 25

2.1 Immagini per rifrazione . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2 Lenti sferiche: doppio diottro . . . . . . . . . . . . . . . . . . . . . . . 28

2.3 Lenti sottili. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4 Lenti sottili convergenti: formazione dell’immagine . . . . . . . . . . . 29

2.5 Lenti sottili divergenti: formazione dell’immagine . . . . . . . . . . . . 31

2.6 Strumenti ottici . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3

Page 4: Corso di Fisica 3 ONDE E ELETTROMAGNETISMO · funzionamento di specchi, prismi, lenti e dei sistemi ottici costruiti con essi. In generale, nell’attraversamento di una super cie

INDICE 4

2.6.1 La macchina fotografica . . . . . . . . . . . . . . . . . . . . . . 32

2.6.2 L’occhio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.6.3 Il microscopio composto . . . . . . . . . . . . . . . . . . . . . . 33

3 Onde 35

3.1 Introduzione . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Il moto ondulatorio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2.1 Descrizione matematica . . . . . . . . . . . . . . . . . . . . . . 36

3.2.2 Equazione differenziale del moto ondulatorio . . . . . . . . . . . 39

3.3 Esempi di onde meccaniche . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3.1 Introduzione . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3.2 Onde trasversali in una corda . . . . . . . . . . . . . . . . . . . 41

3.3.3 Onde elastiche in una sbarra . . . . . . . . . . . . . . . . . . . . 42

3.3.4 Altri esempi di onde meccaniche . . . . . . . . . . . . . . . . . . 45

3.4 Effetto Doppler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.4.1 Sorgente in moto rispetto all’osservatore . . . . . . . . . . . . . 47

3.4.2 Osservatore in moto rispetto alla sorgente . . . . . . . . . . . . 47

3.5 Il principio di sovrapposizione . . . . . . . . . . . . . . . . . . . . . . . 48

3.5.1 Introduzione . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.5.2 Interferenza di onde prodotte da due sorgenti in fase . . . . . . 48

3.5.3 Le onde stazionarie . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.6 Analisi e sintesi armonica . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.6.1 Il principio di Fourier . . . . . . . . . . . . . . . . . . . . . . . . 53

3.6.2 Il timbro degli strumenti . . . . . . . . . . . . . . . . . . . . . . 53

3.7 Qualche nozione di musicologia . . . . . . . . . . . . . . . . . . . . . . 56

3.7.1 Assonanza e dissonanza . . . . . . . . . . . . . . . . . . . . . . 56

3.7.2 La scala diatonica o naturale . . . . . . . . . . . . . . . . . . . . 57

3.7.3 I modi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.7.4 La scala temperata . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.7.5 Caratteristiche degli intervalli musicali . . . . . . . . . . . . . . 62

4 Fenomeni elettrici 65

4.1 Carica elettrica e legge di Coulomb . . . . . . . . . . . . . . . . . . . . 65

4.1.1 Proprieta delle cariche elettriche . . . . . . . . . . . . . . . . . . 65

4.1.2 Isolanti e conduttori . . . . . . . . . . . . . . . . . . . . . . . . 66

4.1.3 La legge di Coulomb . . . . . . . . . . . . . . . . . . . . . . . . 66

4.2 Campo e potenziale elettrostatico . . . . . . . . . . . . . . . . . . . . . 68

4.2.1 Campo elettrico . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.2.2 Linee di forza del campo elettrico . . . . . . . . . . . . . . . . . 69

4.2.3 Il dipolo elettrico . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.2.4 Distribuzioni continue di cariche . . . . . . . . . . . . . . . . . . 71

4.3 La legge di Gauss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

SUPSI-DTI Corso di Fisica e Modellistica Prof. Andrea Danani

Page 5: Corso di Fisica 3 ONDE E ELETTROMAGNETISMO · funzionamento di specchi, prismi, lenti e dei sistemi ottici costruiti con essi. In generale, nell’attraversamento di una super cie

INDICE 5

4.3.1 Introduzione . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.3.2 Flusso di un campo vettoriale . . . . . . . . . . . . . . . . . . . 73

4.3.3 La legge di Gauss . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.4 Conduttori in equilibrio elettrostatico . . . . . . . . . . . . . . . . . . . 76

4.5 Il potenziale elettrico . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.5.1 Definizione . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.5.2 Cariche puntiformi . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.5.3 Potenziale dovuto a una distribuzione continua di carica . . . . 80

4.5.4 Relazione tra campo elettrico e potenziale . . . . . . . . . . . . 80

4.5.5 Potenziale in un conduttore carico isolato . . . . . . . . . . . . . 81

4.6 Capacita elettrica e dielettrici . . . . . . . . . . . . . . . . . . . . . . . 82

4.6.1 Capacita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.6.2 Condensatori . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.6.3 Energia immagazzinata in un campo elettrico . . . . . . . . . . 84

4.6.4 Polarizzazione della materia: dielettrici . . . . . . . . . . . . . . 85

5 Campi magnetici 89

5.1 Introduzione . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.2 Forza di Lorentz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.3 Moto di una carica in un campo magnetico . . . . . . . . . . . . . . . . 91

5.4 L’effetto Hall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.5 Forza magnetica su una corrente elettrica . . . . . . . . . . . . . . . . . 93

5.6 Coppia magnetica su una corrente elettrica . . . . . . . . . . . . . . . . 94

5.7 La legge di Biot Savart . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.8 Applicazioni della legge di Biot-Savart . . . . . . . . . . . . . . . . . . 97

5.8.1 Campo magnetico di una corrente rettilinea . . . . . . . . . . . 97

5.8.2 Forze tra correnti . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.8.3 Campo magnetico di una corrente circolare . . . . . . . . . . . . 99

6 Induzione elettromagnetica 101

6.1 Introduzione . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.2 La legge di Faraday-Henry . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.3 La legge di Lenz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.4 Induzione di movimento . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.5 L’autoinduzione . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.6 Circuiti RL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.7 Energia immagazzinata in una bobina . . . . . . . . . . . . . . . . . . . 107

6.8 Oscillazioni elettriche: circuiti RCL . . . . . . . . . . . . . . . . . . . . 108

6.9 Circuiti accoppiati: mutua induzione . . . . . . . . . . . . . . . . . . . 109

SUPSI-DTI Corso di Fisica e Modellistica Prof. Andrea Danani

Page 6: Corso di Fisica 3 ONDE E ELETTROMAGNETISMO · funzionamento di specchi, prismi, lenti e dei sistemi ottici costruiti con essi. In generale, nell’attraversamento di una super cie

INDICE 6

SUPSI-DTI Corso di Fisica e Modellistica Prof. Andrea Danani

Page 7: Corso di Fisica 3 ONDE E ELETTROMAGNETISMO · funzionamento di specchi, prismi, lenti e dei sistemi ottici costruiti con essi. In generale, nell’attraversamento di una super cie

Capitolo 1

Ottica geometrica

1.1 Introduzione

Che cosa e la luce? In momenti diversi della storia si e pensato che la luce fosse un

insieme di particelle, in altri che fosse un’onda. Oggi, grazie alla fisica quantistica, si

risponde a questa domanda dicendo che la luce e entrambe le cose: onda e particel-

la. In questo capitolo, vengono esaminate alcune proprieta della luce quando la sua

lunghezza d’onda e molto piccola rispetto alla maggior parte degli ostacoli e delle aper-

ture che essa incontra. In questa approssimazione, detta ottica geometrica, si ignora il

carattere ondulatorio della luce e si parla di raggi luminosi che si propagano in linea

retta. Gli unici fenomeni rilevanti sono la rifrazione e la riflessione. Con l’ottica geo-

metrica, e possibile dare una spiegazione approssimata ma sufficiente in molti casi, del

funzionamento di specchi, prismi, lenti e dei sistemi ottici costruiti con essi.

In generale, nell’attraversamento di una superficie di separazione tra due mezzi,

l’onda luminosa viene in parte riflessa ed in parte rifratta.

7

Page 8: Corso di Fisica 3 ONDE E ELETTROMAGNETISMO · funzionamento di specchi, prismi, lenti e dei sistemi ottici costruiti con essi. In generale, nell’attraversamento di una super cie

1.1. INTRODUZIONE 8

Questo fatto permette di distinguere due tipi di superfici.

• Superfici catottriche o specchi, sulle quali si verifica esclusivamente la rifles-

sione (speculare) senza che la luce sia trasmessa ad un secondo mezzo.

• Superfici diottriche o diottri, sulle quali si verifica la trasmissione della luce

da un mezzo all’altro.

Si possono anche distinguere due tipi distinti di riflessione:

• Riflessione diffusiva: su una superficie scabra la normale cambia punto a punto

e i raggi vengono riflessi in ogni direzione; l’oggetto e quindi visibile in ogni

direzione.

• Riflessione speculare: tutti i raggi vengono riflessi con riferimento alla stessa

normale, e i raggi di luce sono quindi visibili solo in una determinata posizione.

Galileo con questo ragionamento dimostro che la superficie della Luna non poteva

essere levigata.

Riflessione diffusiva Riflessione speculare

SUPSI-DTI Corso di Fisica e Modellistica Prof. Andrea Danani

Page 9: Corso di Fisica 3 ONDE E ELETTROMAGNETISMO · funzionamento di specchi, prismi, lenti e dei sistemi ottici costruiti con essi. In generale, nell’attraversamento di una super cie

1.2. LEGGE DELLA RIFLESSIONE 9

1.2 Legge della riflessione

Quando la luce incontra una superficie riflettente, cambia direzione. Il fenomeno della

riflessione e descritto dalle seguenti due leggi:

• 1a legge: il raggio incidente, il raggio riflesso e la normale alla superficie riflettente

giacciono sullo stesso piano

• 2a legge: l’angolo di incidenza e uguale all’angolo di riflessione: θi = θr

1.3 Specchi piani

Un raggio luminoso inviato su uno specchio disposto perpendicolarmente al piano di

appoggio segue la legge della riflessione. Dato che il cervello ritiene che ogni raggio

luminoso debba necessariamente percorrere una retta, l’immagine di un oggetto posto

davanti a uno specchio si produce come se un oggetto simile fosse dietro allo specchio in

posizione simmetrica rispetto ad esso. Trovandosi sul prolungamento dei raggi riflessi,

si parla di immagine virtuale. A causa della riflessione l’immagine viene simmetrizzata,

invertendo la destra con la sinistra.

Tutti i raggi provenienti dall’oggetto (diffusi da una sorgente luminosa) si riflettono

sullo specchio e quindi vanno in ogni direzione, ma quelli utili per osservare l’immagine

sono solo quelli che raggiungono l’occhio.

Indicando la distanza dell’oggetto con p la distanza dell’immagine con q, dato che i

due triangoli PQR e P’QR sono congruenti, le due distanze sono uguali: p = q. Quindi

gli specchi piani non forniscono ingrandimento: h = h′

SUPSI-DTI Corso di Fisica e Modellistica Prof. Andrea Danani

Page 10: Corso di Fisica 3 ONDE E ELETTROMAGNETISMO · funzionamento di specchi, prismi, lenti e dei sistemi ottici costruiti con essi. In generale, nell’attraversamento di una super cie

1.3. SPECCHI PIANI 10

1.3.1 Applicazioni di specchi piani: sistemi di specchi piani

multipli

A causa delle successive riflessioni, due specchi piani formanti tra di loro un angolo α

originano un numero di immagini dato dalla formula:

N =360o

αo− 1 (1.1)

Nella figura sotto, vediamo il caso α = 90o, N = 3.

Il retroriflettore o catarifrangente e formato da tre specchi piani ortogonali posti

sul vertice di un cubo e con apertura triangolare (vedi figura sopra). Questo sistema

permette di riflettere indietro un fascio di luce nella stessa direzione del raggio incidente,

qualunque sia l’angolo di incidenza.

SUPSI-DTI Corso di Fisica e Modellistica Prof. Andrea Danani

Page 11: Corso di Fisica 3 ONDE E ELETTROMAGNETISMO · funzionamento di specchi, prismi, lenti e dei sistemi ottici costruiti con essi. In generale, nell’attraversamento di una super cie

1.4. SPECCHI SFERICI 11

1.4 Specchi sferici

1.4.1 Riflessione su superficie sferica

Per la legge della riflessione, PHO = OHQ = θi e quindi PHQ = θi. Detto θ l’angolo

di apertura del raggio emergente dal punto oggetto P e θ′ l’angolo di apertura del punto

immagine Q si ottiene la relazione θ′ = θ + θi. Nel triangolo PQH, rispettivamente

per il teorema della bisettrice e per il teorema dei seni si ottiene che:

PH

HQ=PO

OQ=p− rr − q

;PH

HQ=

sin θ′

sin(θ′ − 2θ)(1.2)

Uguagliando i due termini si ottiene:

p =(r − q) sin(θ′)

sin(θ′ − 2θi)+ r ; q =

(r − p) sin(θ′ − 2θi)

sin(θ′)+ r (1.3)

Come si vede in (1.3), l’espressione per q non dipende solo dalla posizione del punto P

ma anche dall’angolo θ del raggio. Applicando il teorema del seno al triangolo POH

si ottiene:

sin(θi) =(p− r) sin(θ)

r(1.4)

1.4.2 Specchi concavi e convessi

Per ogni raggio incidente sullo specchio vale la legge della riflessione rispetto alla nor-

male alla superficie nel punto di incidenza. Possiamo avere due tipi di curvatura:

convessa o concava.

• Specchio concavo: la riflessione avviene sulla superficie interna della sfera, e

il centro di curvatura e dalla stessa parte rispetto all’osservatore. Offrono varie

modalita di utilizzo, ma in genere la principale e quella in cui offrono immagini

SUPSI-DTI Corso di Fisica e Modellistica Prof. Andrea Danani

Page 12: Corso di Fisica 3 ONDE E ELETTROMAGNETISMO · funzionamento di specchi, prismi, lenti e dei sistemi ottici costruiti con essi. In generale, nell’attraversamento di una super cie

1.4. SPECCHI SFERICI 12

ingranditi a campo visivo ridotto (esempio: specchio da trucco). Possono lavora-

re in modalita convergente o divergente, a seconda della posizione dell’oggetto,

formano quindi immagini sia reali sia virtuali.

• Specchio convesso: la riflessione avviene sulla superficie esterna della sfera, e il

centro di curvatura e dalla parte opposta rispetto all’osservatore. I principali uti-

lizzi sfruttano il fatto che offrono immagini rimpicciolite a campo visivo allargata

(esempi: specchietti retrovisori, specchi stradali agli incroci). Possono lavorare

soltanto in modalita divergente, e quindi formano immagini solo virtuali.

Specchio concavo Specchio convesso

1.4.3 Nomenclatura e convenzione dei segni

Il punto di riferimento e sempre la direzione da cui provengono i raggi incidenti; per

convenzione si rappresentano sempre come provenienti da sinistra.

• distanza oggetto p e distanza immagine q: distanze dal centro dello specchio V . Se

l’oggetto o l’immagine si trovano dal lato riflettente (a sinistra) le corrispondenti

distanze p e q sono positive; se si trovano dal lato opposto a quello dei raggi

incidenti (a destra) sono negative. La definizione e la stessa sia per gli specchi

concavi sia per quelli convessi.

• raggio e centro di curvatura: R e il raggio della superficie sferica, C il suo centro.

Se C si trova dal lato riflettente (a sinistra) abbiamo R > 0; se C si trova a destra

all’interno dello specchio si ha che R < 0. Quindi se ha che R < 0 per gli specchi

convessi, R > 0 per gli specchi concavi.

• immagine reale e virtuale: per la convenzione sui segni di q si ha q > 0 per

un’immagine reale e q < 0 per un’immagine virtuale.

• altezza oggetto h e altezza immagine h′: il riferimento e l’oggetto, quindi si pone

a priori h > 0 qualunque sia l’orientamento dell’oggetto; si ha poi h′ < 0 per

un’immagine capovolta, h′ > 0 per un’immagine diretta come l’oggetto.

SUPSI-DTI Corso di Fisica e Modellistica Prof. Andrea Danani

Page 13: Corso di Fisica 3 ONDE E ELETTROMAGNETISMO · funzionamento di specchi, prismi, lenti e dei sistemi ottici costruiti con essi. In generale, nell’attraversamento di una super cie

1.5. ABERRAZIONE E OTTICA DI GAUSS 13

Uno specchio sferico e inoltre caratterizzato dai seguenti elementi:

• l’asse ottico, che corrisponde alla retta che congiunge il centro con il vertice A;

• il fuoco F , il punto dove convergono tutti i raggi paralleli all’asse ottico dopo la

riflessione;

• la distanza focale f , vale a dire la distanza fra il fuoco e il vertice. Per gli specchi

sferici, vedremo che f = R/2.

1.5 Aberrazione e ottica di Gauss

In generale, negli specchi sferici, i raggi che giungono paralleli all’asse principale non

convergono in un unico punto e si parla di aberrazione. Nel caso in cui l’angolo di

apertura dello specchio e piccolo, vale a dire che sin θ ≈ tan θ ≈ θ, questo non si

verifica ed e possibile definire il fuoco. Questa approssimazione viene definita ottica

di Gauss.

La lunghezza focale di uno specchio concavo si puo ricavare in approssimazione

di Gauss con poche semplici considerazioni geometriche. Un raggio parallelo all’asse

colpisce in B lo specchio; la normale alla superficie e BC = r. La riflessione avviene

con angolo θ rispetto alla normale, che e uguale all’angolo BCA quindi il triangolo

CBF e isoscele, e CF = BF . In approssimazione di ottica di Gauss si ha AF ≈ BF

e quindi e AF = CF ; si ottiene quindi la relazione AC = r = 2AF = 2f . La distanza

focale in uno specchio concavo e quindi:

f =r

2(1.5)

Notare che vale sempre | f | < | r |. Il fuoco e sempre tra il centro fisico dello

specchio e il suo centro di curvatura.

SUPSI-DTI Corso di Fisica e Modellistica Prof. Andrea Danani

Page 14: Corso di Fisica 3 ONDE E ELETTROMAGNETISMO · funzionamento di specchi, prismi, lenti e dei sistemi ottici costruiti con essi. In generale, nell’attraversamento di una super cie

1.6. FORMULA DEI PUNTI CONIUGATI 14

1.6 Formula dei punti coniugati

La posizione dell’immagine puo essere determinata per via algebrica. Usando le equa-

zioni (1.3) nell’approssimazione di Gauss, si ottiene:

p =(r − q)θ′

θ′ − 2θi+ r e θ′ =

rθir − q

(1.6)

Sostituendo la seconda equazione nella prima, scompaiono le dipendenze angolari e

si ottiene:

2pq = qr + pr (1.7)

Quindi, dividendo la (1.7) per pqr, si ottiene l’equazione:

2

r=

1

p+

1

q. (1.8)

Nel paragrafo precedente abbiamo dimostrato come in ottica di Gauss si abbia

f = r/2; questo si puo pero anche ricavare in modo analitico dalla formula sopra

osservando il punto immagine di un punto oggetto ad infinito: per p → ∞ si ha

q = r/2, quindi il fuoco e effettivamente il punto immagine dell’infinito. Detta f la

distanza focale, si ha quindi la formula dei punti coniugati:

1

f=

1

p+

1

q. (1.9)

La legge dei punti coniugati (1.9) vale per tutti i casi possibili, purche si attribui-

scano i segni opportuni alle distanze p, q e f . La tabella seguente elenca le convenzioni

sui segni per una superficie rifrangente sferica:

+ –

Raggio R Concava Convessa

Distanza focale f Convergente Divergente

Oggetto p Reale Virtuale

Immagine q Reale Virtuale

Tabella 1.1: Convenzione sui segni per uno specchio sferico

SUPSI-DTI Corso di Fisica e Modellistica Prof. Andrea Danani

Page 15: Corso di Fisica 3 ONDE E ELETTROMAGNETISMO · funzionamento di specchi, prismi, lenti e dei sistemi ottici costruiti con essi. In generale, nell’attraversamento di una super cie

1.7. COSTRUZIONE GRAFICA DI UN IMMAGINE 15

1.7 Costruzione grafica di un immagine

E’ possibile ricavare graficamente l’immagine di una sorgente luminosa puntiforme,

sfruttando opportunamente le seguenti proprieta .

• un raggio emesso in direzione parallela all’asse ottico e riflesso nel fuoco dello

specchio;

• un raggio che passa per il centro dello specchio viene riflesso nella medesima

direzione dalla quale proviene;

• un raggio passante per il fuoco viene riflesso parallelamente all’asse ottico;

• Un raggio che incide sul vertice viene riflesso simmetricamente rispetto all’asse

ottico.

Le proprieta elencate sono formulate per uno specchio concavo ma sono valide anche

per uno concavo considerando i prolungamenti virtuali dei raggi, come si puo vedere

nella figura (1.1)

Poiche tutti i raggi emessi da un punto convergono in un medesimo punto, basta

costruire due raggi e trovarne l’intersezione.

Figura 1.1: Raggi principali nel caso di specchi sferici. (a) concavo e (b) convesso.

SUPSI-DTI Corso di Fisica e Modellistica Prof. Andrea Danani

Page 16: Corso di Fisica 3 ONDE E ELETTROMAGNETISMO · funzionamento di specchi, prismi, lenti e dei sistemi ottici costruiti con essi. In generale, nell’attraversamento di una super cie

1.8. INGRANDIMENTO E POTENZA 16

1.8 Ingrandimento e potenza

L’ingrandimento G di uno specchio e il rapporto fra l’altezza dell’immagine e quella

dell’oggetto. Si puo dimostrare che vale

G =h′

h= −q

p(1.10)

In base alla convenzione adottata per i segni, si ha h > o e p > 0 (puo essere p¡0solo

in particolari sistemi ottici che verranno discussi a parte). Quando l’immagine e reale

(q > 0) si ha un’immagine capovolta (h′ < 0) ; quando l’immagine e virtuale (q < 0) si

ha un’immagine diritta (h′ > 0). Da questo origina il segno negativo nella definizione

dell’ingrandimento trasversale. L’immagine e ingrandita quando e piu distante

dell’oggetto rispetto allo specchio.

La relazione e facilmente dimostrabile considerando che i triangoli evidenziati in

figura sono simili.

La potenza di uno specchio, quando il raggio e la focale di uno specchio sono

misurati in metri, si definisce come l’inverso della lunghezza focale ed e espressa in

diottrie; la potenza si indica generalmente con la lettera K.

La potenza degli specchi e positiva per gli specchi concavi e negativa per gli specchi

convessi, esattamente come le rispettive distanze focali.

Uno specchio concavo di raggio r = 05 m avra per esempio una focale f = 25 cm

e una potenza K = 4 D; uno specchio convesso di raggio r = −1 m avra per esempio

una focale f = −50 cm e una potenza K = −2 D.

SUPSI-DTI Corso di Fisica e Modellistica Prof. Andrea Danani

Page 17: Corso di Fisica 3 ONDE E ELETTROMAGNETISMO · funzionamento di specchi, prismi, lenti e dei sistemi ottici costruiti con essi. In generale, nell’attraversamento di una super cie

1.9. SPECCHI CONCAVI: FORMAZIONE DELL’IMMAGINE 17

1.9 Specchi concavi: formazione dell’immagine

1.9.1 Specchi concavi: modalita convergente

Se un oggetto e posto tra centro e fuoco, si ha un’immagine reale, postra tra centro

e fuoco, capovolta e ingrandita. Per l’invertibilita del cammino ottico, se l’oggetto

e l’immagine possono scambiarsi i ruoli e il diagramma non cambia: un’oggetto po-

sto prima del centro forma un’immagine reale, posta tra centro e fuoco, capovolta, e

rimpicciolita.

1.9.2 Specchi concavi: modalita divergente

Se l’oggetto e posto tra fuoco e specchio l’immagine risultante e virtuale, dietro lo

specchio, diritta e ingrandita. Questa e la modalita in cui usa uno specchio da trucco,

avvicinando molto allo specchio oltrepassando la posizione del punto focale.

SUPSI-DTI Corso di Fisica e Modellistica Prof. Andrea Danani

Page 18: Corso di Fisica 3 ONDE E ELETTROMAGNETISMO · funzionamento di specchi, prismi, lenti e dei sistemi ottici costruiti con essi. In generale, nell’attraversamento di una super cie

1.10. SPECCHI CONVESSI: FORMAZIONE DELL’IMMAGINE 18

1.10 Specchi convessi: formazione dell’immagine

Anche per gli specchi convessi si verifica il fenomeno dell’aberrazione sferica. Se pero

lo specchio e piccolo rispetto al suo raggio di curvatura, ed e possibile lavorare in ottica

gaussiana, l’aberrazione sferica e trascurabile, tutti i raggi vengono riflessi formando

piccoli angoli con la normale nel punto di riflessione, e i loro prolungamenti oltre la

superficie riflettente si incontrano in un unico punto, il fuoco. Si ricordi che gli specchi

convessi hanno distanza focale e raggio di curvatura negativi.

L’equazione degli specchi non cambia, ed e solo necessario considerare le grandez-

ze con il segno corretto. Uno specchio convesso fornisce sempre e solo un’immagine

virtuale, essendo divergente. Indipendentemente dalla distanza dell’oggetto dal centro

dello specchio e dal fuoco, l’immagine e sempre diritta, virtuale, e rimpicciolita.

SUPSI-DTI Corso di Fisica e Modellistica Prof. Andrea Danani

Page 19: Corso di Fisica 3 ONDE E ELETTROMAGNETISMO · funzionamento di specchi, prismi, lenti e dei sistemi ottici costruiti con essi. In generale, nell’attraversamento di una super cie

1.11. CASO SPECIALE: SPECCHI PIANI 19

1.11 Caso speciale: specchi piani

Uno specchio piano puo essere considerato come il caso limite di uno specchio sferico:

uno specchio piano e uno specchio sferico di raggio di curvatura r = oo

L’equazione degli specchi diventa quindi:

1

p+

1

q=

2

R=

2

∞= 0 (1.11)

da cui segue:

p = −q (1.12)

e cioe che l’immagine e virtuale e simmetrica rispetto alla superficie dello specchio,

a grandezza naturale e nella stessa direzione dell’oggetto (G = 1).

SUPSI-DTI Corso di Fisica e Modellistica Prof. Andrea Danani

Page 20: Corso di Fisica 3 ONDE E ELETTROMAGNETISMO · funzionamento di specchi, prismi, lenti e dei sistemi ottici costruiti con essi. In generale, nell’attraversamento di una super cie

1.12. RIFRAZIONE: LEGGE DI SNELL 20

1.12 Rifrazione: legge di Snell

Quando la luce incide sulla superficie di separazione di due mezzi trasparenti viene

deviata. La deviazione e dovuta alla diversa velocita che la luce ha nei due mezzi: il

raggio si avvicina alla normale se entra in un mezzo in cui la velocita della luce e minore;

si allontana dalla normale se entra in un mezzo in cui la velocita della luce e maggiore.

Il comportamento del raggio rifratto e descritto dalle due leggi della rifrazione:

• 1a legge: il raggio incidente, il raggio rifratto e la normale alla superficie riflet-

tente giacciono sullo stesso piano

• 2a legge: il rapporto fra i seni dei due angoli di incidenza e di rifrazione e

costante.sin θ1

sin θ2

=n2

n1

= n12

La seconda legge e nota come legge di Snell. n12 e l’indice di rifrazione del mezzo B

(in cui la luce penetra) relativo al mezzo A (da cui la luce proviene). Se n12 > 1, si dice

che il mezzo 2 e otticamente pıu denso del mezzo 1. In questo caso il raggio rifratto si

avvicina alla normale, come illustrato nella Fig.(1.2) con aria e vetro, dove v1 > v2.

Figura 1.2: Rifrazione nel passaggio da aria a vetro

La definizione di angoli di incidenza e la stessa utilizzata per la riflessione, e cioe

l’angolo tra raggio incidente e normale alla superficie, mentre l’angolo di rifrazione e

l’angolo tra il raggio rifratto e la normale alla superficie.

SUPSI-DTI Corso di Fisica e Modellistica Prof. Andrea Danani

Page 21: Corso di Fisica 3 ONDE E ELETTROMAGNETISMO · funzionamento di specchi, prismi, lenti e dei sistemi ottici costruiti con essi. In generale, nell’attraversamento di una super cie

1.12. RIFRAZIONE: LEGGE DI SNELL 21

Figura 1.3: Tripla riflessione e doppia rifrazione

1.12.1 Illusioni ottiche

La rifrazione e responsabile di molte illusione ottiche appartenenti all’esperienza co-

mune.

Esse sono tutte conseguenza del fatto che il cer-

vello umano interpreta la propagazione della luce

solo secondo linee rette: un diottro piano introdu-

ce quindi un’ “illusione ottica”. La donna immersa

in acqua viene percepita con le gambe molto piu

corte della realta; questo perche i raggi provenienti

dai piedi vengono deviati nel passaggio attraver-

so il diottro piano. L’uomo percepisce l’immagine

virtuale data dal raggio tratteggiato. Un’altra “il-

lusione ottica” dovuta alla rifrazione su un diot-

tro piano e quella data da una matita immersa in

acqua, che sembra spezzata.

SUPSI-DTI Corso di Fisica e Modellistica Prof. Andrea Danani

Page 22: Corso di Fisica 3 ONDE E ELETTROMAGNETISMO · funzionamento di specchi, prismi, lenti e dei sistemi ottici costruiti con essi. In generale, nell’attraversamento di una super cie

1.12. RIFRAZIONE: LEGGE DI SNELL 22

ESEMPIO 1.1. La maschera subacquea di una nuotatrice e affondata in un a piscina

profonda d = 1 m. Qual e la profondita apparente a cui, osservandola da sopra la

superficie dell’acqua, si trova la maschera?

Soluzione:

L’acqua sembra meno profonda di quanto sia in realta. I raggi provenienti dagli

oggetti immersi o dal fondo attraversando l’interfaccia aria – acqua vengono deviati,

avvicinandosi alla normale, e divergendo; l’effetto netto e che ad un osservatore fuo-

ri dall’acqua i raggi sembrano provenire da un punto piu vicino alla superficie. Dal

momento che il testo precisa che l’osservazione avviene dalla normale alla superfi-

cie, possiamo assumere l’ipotesi di raggi parassiali e ottenere la profondita apparente

semplicemente dalla formula:

d′ = dn′

n= d

1

1.33= 0.75 m (1.13)

Osservando dall’esterno un oggetto in acqua l’immagine risulta sempre essere piu pros-

sima rispetto alla realta di un fattore 25%.

Esempio 1.1 Esempio 1.2

ESEMPIO 1.2. La luce colpisce una lastra di vetro piana con un angolo di incidenza

di 60o. Se l’indice di rifrazione del vetro e n = 1.5,

a) qual e l’angolo di rifrazione θA nel vetro?

b) Con quale angolo θB il raggio riemerge dal vetro?

Soluzione:

a) Il raggio incidente proviene dall’aria, quindi e n1 = 1 e n2 = 1.5; la legge di Snell

fornisce il valore:

sin θA = 0.577 da cui θA = 35.2o (1.14)

SUPSI-DTI Corso di Fisica e Modellistica Prof. Andrea Danani

Page 23: Corso di Fisica 3 ONDE E ELETTROMAGNETISMO · funzionamento di specchi, prismi, lenti e dei sistemi ottici costruiti con essi. In generale, nell’attraversamento di una super cie

1.12. RIFRAZIONE: LEGGE DI SNELL 23

b) le due facce di vetro sono parallele, e in questo caso l’angolo di incidenza e θA e

quello di rifrazione θB:

sin θB = 0.866 da cui θB = 60o (1.15)

Il raggio non cambia quindi direzione nel passaggio attraverso una la lastra di

vetro a facce piane. Subisce pero uno spostamento laterale, come e possibile verificare

osservando un oggetto parzialmente coperto da una lastra di vetro osservando gli effetti

di bordo.

1.12.2 Riflessione totale

Mentre nel passaggio da mezzo ottico meno denso ad uno piu denso un raggio luminoso

viene sempre rifratto, non sempre si verifica il contrario. Infatti, quando la luce passa

da un mezzo piu denso a uno meno denso, il raggio rifratto si allontana dalla normale

all’aumentare dell’angolo di incidenza e per un dato angolo di incidenza, esso raggiun-

gera un angolo di 90o parallelo alla superficie di separazione. Se l’angolo di incidenza

aumenta ulteriormente non c’e piu rifrazione e il raggio e soggetto al fenomeno della

riflessione totale. L’angolo di incidenza per cui avviene la riflessione totale si chiama

angolo limite e corrisponde al valore di incidenza che genera un angolo di rifrazione di

90o, vale adire:

sin θC =n2

n1

sin 90o =n2

n1

. (1.16)

Per tale valore il raggio rifratto giace sulla superficie. Oltre tale valore la rifrazione

non e piu possibile, e tutta la luce viene completamente riflessa, come illustrato nella

figura sotto per i raggi 4 e 5.

SUPSI-DTI Corso di Fisica e Modellistica Prof. Andrea Danani

Page 24: Corso di Fisica 3 ONDE E ELETTROMAGNETISMO · funzionamento di specchi, prismi, lenti e dei sistemi ottici costruiti con essi. In generale, nell’attraversamento di una super cie

1.12. RIFRAZIONE: LEGGE DI SNELL 24

1.12.3 Riflessione totale: applicazioni

Binocolo: all’interno del binocolo, invece di specchi, vengono posti prismi; la combi-

nazione opportuna delle distanze focali dei prismi, che agiscono sempre come specchi,

perche le loro facce sono sempre orientate in modo tale da avere riflessione totale, pro-

duce l’ingrandimento. Il vantaggio, nell’usare i prismi, e che la totalita della luce viene

riflessa in questo modo, mentre questo e impossibile anche nel migliore specchio. La

riflessione totale nei prismi verra descritta in dettaglio nella sezione dei prismi.

Fibra ottica: la fibra agisce come una guida di luce, in cui il raggio luminoso

si riflette, in modo totale, sulla superficie interna della fibra, procedendo in modo

fortemente obliquo. In questo modo anche se la fibra e topologicamente contorta, si ha

sempre riflessione totale e la fibra trasmette un segnale luminoso praticamente senza

perdite. Il loro utilizzo principale e nelle telecomunicazioni per trasmettere segnali a

larga banda con minima attenuazione.

Endoscopio: un array di fibre ottiche permette la trasmissione di segnali indi-

pendenti per formare un’immagine. La flessibilita del sistema di fibre permette l’inse-

rimento dell’endoscopio all’interno del corpo umano attraverso cavita aeree (trachea,

esofago) o circolatorie (vasi)

1.12.4 Riflessione totale: effetto fish-eye

In caso di superficie molto tranquilla, un subacqueo che osserva verso l’alto subisce il

fenomeno della riflessione totale sul diottro piano costituito dalla superficie di sepa-

razione acqua-aria. Questo e dovuto al fatto che i raggi che giungono al subacqueo

subiscono una rifrazione attraverso il diottro piano in un mezzo, l’aria, di indice di

rifrazione minore; si puo verificare quindi il fenomeno della riflessione totale sul diottro

piano, caratterizzata da un angolo critico pari a θC = 49o.

I raggi provenienti dal mondo esterno sono quindi compressi in un cono di 49o;

tutto quanto e esterno a questo cono nella visuale del subacqueo non puo provenire

dalla parte sovrastante l’acqua, ma deve essere una riflessione (totale) sulla superficie

dell’immagine del bordo o del fondo della piscina o del bacino.

SUPSI-DTI Corso di Fisica e Modellistica Prof. Andrea Danani

Page 25: Corso di Fisica 3 ONDE E ELETTROMAGNETISMO · funzionamento di specchi, prismi, lenti e dei sistemi ottici costruiti con essi. In generale, nell’attraversamento di una super cie

Capitolo 2

Le lenti

Abbiamo visto che le leggi della riflessione e della rifrazione consentono di determi-

nare il cammino dei raggi luminosi nei mezzi trasparenti. Esse costituiscono la base

fondamentale per la costruzione degli strumenti ottici, come le lenti per occhiali, mi-

croscopi, macchine fotografiche, ecc. In questi dispositivi, la luce viene guidata lungo

un percorso prestabilito e ben determinato.

Una lente e un oggetto trasparente con due superfici rifrangenti i cui assi centrali

coincidono; l’asse comune costituisce l’asse centrale della lente. Le lenti rappresentano

la parte essenziale degli strumenti ottici. In generale vengono usate lenti sferiche,

cioe corpi rifrangenti limitati da superfici sferiche. Le lenti sono sempre di materiale

ad indice di rifrazione maggiore dell’aria, tipicamente di vetro o di plastica. Le due

facce che delimitano le lenti possono avere molte forme diverse e ogni faccia puo essere

indipendentemente concava o convessa. Qui sotto vediamo alcune configurazioni

Biconvessa Menisco convergenti Biconcava Menisco divergente Piano concava

A seconda della particolare conformazione, le lenti sferiche si suddividono in lenti

convergenti e lenti divergenti. Nell’ipotesi che l’indice di rifrazione della lente sia mag-

giore di quello del mezzo in cui si trova (tipicamente, l’aria), le lenti convergenti, piu

spesse al centro e piu sottili ai bordi, hanno la proprieta di far convergere un fascio

di raggi paralleli in un unico punto (il fuoco della lente); un esempio di questo tipo di

lenti e il telescopio semplice o lente di ingrandimento. Le lenti divergenti, piu spesse ai

bordi e piu sottili al centro, producono l’effetto contrario, vale a dire, fanno divergere

un fascio di raggi paralleli; sono divergenti, ad esempio, le lenti correttive per la miopia.

25

Page 26: Corso di Fisica 3 ONDE E ELETTROMAGNETISMO · funzionamento di specchi, prismi, lenti e dei sistemi ottici costruiti con essi. In generale, nell’attraversamento di una super cie

2.1. IMMAGINI PER RIFRAZIONE 26

2.1 Immagini per rifrazione

Nella figura sotto, sono illustrati i sei possibili risultati per la formazione di un immagine

dopo la rifrazione.

Figura 2.1: I sei possibili modi per formare un immagine per rifrazione.

SUPSI-DTI Corso di Fisica e Modellistica Prof. Andrea Danani

Page 27: Corso di Fisica 3 ONDE E ELETTROMAGNETISMO · funzionamento di specchi, prismi, lenti e dei sistemi ottici costruiti con essi. In generale, nell’attraversamento di una super cie

2.1. IMMAGINI PER RIFRAZIONE 27

Rispetto alla superficie rifrangente, le immagini reali si formano dalla parte opposta

a quella dell’oggetto, mentre le immagini virtuali si formano dalla stessa parte.

Figura 2.2: Prima rifrazione

Per raggi di luce che formano angoli piccoli con l’asse ottico (approssimazione di

Gauss), vale la formula:

n1

p+n2

q=n2 − n1

R. (2.1)

detta anche formula di Descartes1.

Come per gli specchi curvi, la distanza p dell’oggetto e quella q dell’immagine sono

positive quando sono reali, negative quando sono virtuali. Al fine della correttezza di

tutti i segni nell’equazione (2.1), bisogna adottare la seguente convenzione per R:

Quando l’oggetto si affaccia verso una superficie rifrangente convessa, il raggio di

curvatura R e positivo. Se si affaccia verso una superficie concava, R e negativo.

Questa regola e il rovescio di quella adottata per gli specchi curvi. Per il potere di

ingrandimento, l’analogo della formula (1.10) per una superficie rifrangente sferica e :

G = −n1q

n2p(2.2)

1Dimostrazione a lezione

SUPSI-DTI Corso di Fisica e Modellistica Prof. Andrea Danani

Page 28: Corso di Fisica 3 ONDE E ELETTROMAGNETISMO · funzionamento di specchi, prismi, lenti e dei sistemi ottici costruiti con essi. In generale, nell’attraversamento di una super cie

2.2. LENTI SFERICHE: DOPPIO DIOTTRO 28

2.2 Lenti sferiche: doppio diottro

Una lente sferica si puo descrivere una lente come una coppia di diottri sferici, coassiali,

accoppiati.

La posizione dell’immagine Q formata dal punto P attraverso il diottro di raggio

R1 e vertice V1 puo essere ricavata dalla formula del diottro sferico:

n1

p1

+n2

q1

=n2 − n1

R1

. (2.3)

Il punto Q e a sua volta immagine per il diottro di raggio R2 e vertice V2:

p2 = −(q1 − s) (2.4)

e la posizione dell’immagine finale si ricava applicando nuovamente l’equazione per

il secondo diottro:

n2

p2

+n3

q2

=n3 − n2

R2

. (2.5)

2.3 Lenti sottili.

In seguito, ci limiteremo al caso delle lenti sottili, dove lo spessore e piccolo in rapporto

alla distanza dell’oggetto e alla distanza dell’immagine. Per raggi che formano angoli

piccoli rispetto all’asse ottico e assumendo nelle equazioni (2.4) e (2.5) che s = 0 e

n1 = n3, si puo mostrare che p e q stanno in relazione fra loro secondo l’espressione:

1

p+

1

q=

1

f. (2.6)

dove la distanza focale della lente e data da:

1

f= (n− 1)

(1

R1

− 1

R2

)(2.7)

SUPSI-DTI Corso di Fisica e Modellistica Prof. Andrea Danani

Page 29: Corso di Fisica 3 ONDE E ELETTROMAGNETISMO · funzionamento di specchi, prismi, lenti e dei sistemi ottici costruiti con essi. In generale, nell’attraversamento di una super cie

2.4. LENTI SOTTILI CONVERGENTI: FORMAZIONE DELL’IMMAGINE29

considerando la lente con indice di rifrazione n immersa in aria, R1 il raggio di

curvatura della lente piu vicina all’oggetto e R2 quello dell’altra superficie.

L’equazione (2.7) e spesso chiamata equazione del costruttore di lenti. Rimane

valida anche se la lente e immersa in un mezzo in cui l’indice di rifrazione e diverso

da 1; basta sostituire n con n/nmezzo. Pur essendo simile alla legge per gli specchi,

per le lenti q e positivo se l’immagine e dal lato della trasmissione della lente, mentre

la convenzione per i segni di r e uguale a quella prodotta dalla rifrazione: il raggio di

curvatura e positivo se il centro di curvatura e dalla parte della trasmissione e negativo

se e dal lato d’incidenza.

2.4 Lenti sottili convergenti: formazione dell’im-

magine

La rifrazione avviene tramite infiniti raggi; consideriamo tre raggi particolari:

1. un raggio parallelo all’asse passa per il fuoco immagine F

2. un raggio incidente che passa per il centro ottico delle lenti non viene deviato

3. un raggio incidente che passa per il fuoco oggetto F emerge parallelamente all’asse

A seconda della posizione dell’oggetto l’immagine puo essere reale o virtuale. Nella

figura (2.3) vengono mostrati i diversi tipi di immagini formate da lenti convergenti e

divergenti. La situazione viene riassunta dalla seguente tabella:

Relazione Immagine

p > 2F reale, capovolta, rimpicciolita

p = 2F reale, capovolta, uguale

F < p < 2F reale, capovolta, ingrandita

p = F si forma all’infinito

p < F virtuale, diritta, ingrandita

SUPSI-DTI Corso di Fisica e Modellistica Prof. Andrea Danani

Page 30: Corso di Fisica 3 ONDE E ELETTROMAGNETISMO · funzionamento di specchi, prismi, lenti e dei sistemi ottici costruiti con essi. In generale, nell’attraversamento di una super cie

2.4. LENTI SOTTILI CONVERGENTI: FORMAZIONE DELL’IMMAGINE30

Figura 2.3: Una lente convergente forma un’immagine reale e capovolta quando la

candela e oltre il punto focale F . Se e posta nel fuoco, l’immagine non si forma. Piu

vicina del punto focale F , l’immagine e virtuale e ha lo stesso orientamento.

SUPSI-DTI Corso di Fisica e Modellistica Prof. Andrea Danani

Page 31: Corso di Fisica 3 ONDE E ELETTROMAGNETISMO · funzionamento di specchi, prismi, lenti e dei sistemi ottici costruiti con essi. In generale, nell’attraversamento di una super cie

2.5. LENTI SOTTILI DIVERGENTI: FORMAZIONE DELL’IMMAGINE 31

Quindi quando la candela si trova piu vicino del punto focale F , l’immagine e vir-

tuale e ha lo stesso orientamento. E il caso di una lente di ingrandimento: l’angolo a

cui l’occhio percepisce l’immagine ingrandita (la sua dimensione angolare apparente) e

maggiore di quello che sarebbe definito dal medesimo oggetto osservato direttamente,

a distanza normale. Sono lenti convergenti anche quelle utilizzate per correggere l’i-

permetropia, il difetto della vista per il quale l’immagine non si forma sulla retina, ma

dietro di essa.

2.5 Lenti sottili divergenti: formazione dell’imma-

gine

La rifrazione avviene tramite infiniti raggi; consideriamo i seguenti raggi particolari:

1. un raggio parallelo all’asse passa per il fuoco immagine F

2. un raggio incidente che passa per il centro ottico delle lenti non viene deviato

3. un raggio incidente che passa per il fuoco oggetto F emerge parallelamente all’asse

Una lente divergente forma un’immagine virtuale dell’oggetto con il suo stesso

orientamento, indipendentemente dalla posizione della candela.

SUPSI-DTI Corso di Fisica e Modellistica Prof. Andrea Danani

Page 32: Corso di Fisica 3 ONDE E ELETTROMAGNETISMO · funzionamento di specchi, prismi, lenti e dei sistemi ottici costruiti con essi. In generale, nell’attraversamento di una super cie

2.6. STRUMENTI OTTICI 32

2.6 Strumenti ottici

2.6.1 La macchina fotografica

La parti principali di una macchina fotografica sono l’obiettivo, il diaframma e il

contenitore a tenuta di luce della pellicola.

L’obiettivo e un insieme di lenti (gruppi ottici) equivalenti a una lente convergente;

il diaframma e un’apertura, di solito circolare, di larghezza variabile che serva alimitare

la quantita di luce che raggiunge la pellicola.

La luce emessa o diffusa da un oggetto arriva nell’obiettivo, attraversa il diaframma

e giunge sulla pellicola dove si forma l’immagine capovolta e rimpicciolita (Fig.2.6.1).

L’oggetto e a fuoco quando l’immagine cade esattamente sulla pellicola. Se l’oggetto

non e a fuoco, l’immagine si forma davanti o dietro la pellicola. In tal caso, si muove

la ghiera poata sull’obiettivo in modo da riportare l’immagine sul piano della pellicola.

2.6.2 L’occhio

Per certi versi l’occhio e analogo a una macchina fotografica, ma i componenti sono

disposti in ordine diverso (Fig.2.6.2).

La corrispondenza fra i vari componenti e la seguente:

Macchina fotografica Occhio

Obiettivo Cristallino

Diaframma Iride

Pellicola Retina

SUPSI-DTI Corso di Fisica e Modellistica Prof. Andrea Danani

Page 33: Corso di Fisica 3 ONDE E ELETTROMAGNETISMO · funzionamento di specchi, prismi, lenti e dei sistemi ottici costruiti con essi. In generale, nell’attraversamento di una super cie

2.6. STRUMENTI OTTICI 33

La messa a fuoco e pero’ diversa: nella macchina fotografica si spostano avanti e

indietro i gruppi ottici nell’obiettivo, mentre nell’occhio il cristallino ha la capacita di

curvarsi per modificare la distanza focale (accomodamento).

Due sono i difetti tipici dell’occhio: miopia e ipermetropia. Nell’occhio miope

l’immagine si forma davanti alla retina perche il cristallino converge troppo; questo

difetto si corregge con lenti convergenti. nell’occhio ipermetrope l’immagine si forma

dietro la retina perche il cristallino converge poco; questo difetto si corregge con lenti

convergenti.

Il potere diottrico di una lente correttiva e l’inverso della distanza focale, espressa

in metri e si misura in diottrie.

2.6.3 Il microscopio composto

Serve per osservare oggetti molto piccoli. Si puo schematizzare con due lenti conver-

genti, chiamate obiettivo e oculare (Fig.2.6.3).

SUPSI-DTI Corso di Fisica e Modellistica Prof. Andrea Danani

Page 34: Corso di Fisica 3 ONDE E ELETTROMAGNETISMO · funzionamento di specchi, prismi, lenti e dei sistemi ottici costruiti con essi. In generale, nell’attraversamento di una super cie

2.6. STRUMENTI OTTICI 34

L’oggetto e collocato a una distanza dall’obiettivo di poco superiore alla distanza

focale. Si forma un’immagine reale, ingrandita e capovolta, situata dalla parte opposta

rispetto all’obiettivo. L’oculare usa poi come oggetto l’immagine formata dall’obiettivo

e la ingrandisce ulteriormente.

la distanza focale dell’obiettivo e dell’ordine del centimetro, mentre quella dell’ocu-

lare e maggiore.

Una formula approssimata dell’ingrandimento fornito da un microscopio e la se-

guente:

G =25 d

fob · foc(2.8)

dove tutte le distanze sono espresse in centimetri. d rappresenta la distanza fra l’obiet-

tivo e l’oculare mentre fob e foc sono le due distanze focali dell’obiettivo rispettivamente

dell’oculare.

SUPSI-DTI Corso di Fisica e Modellistica Prof. Andrea Danani

Page 35: Corso di Fisica 3 ONDE E ELETTROMAGNETISMO · funzionamento di specchi, prismi, lenti e dei sistemi ottici costruiti con essi. In generale, nell’attraversamento di una super cie

Capitolo 3

Onde

3.1 Introduzione

Quando si suona una campana, il suono e udito in punti lontani; il suono viene tra-

smesso attraverso l’aria circostante. Se una barca che si muove velocemente passa ad

una certa distanza dalla spiaggia, la scia che la barca ha prodotto raggiunge alla fine

la spiaggia. Quando si accende una lampadina, la stanza viene illuminata. Per quanto

il meccanismo fisico possa essere diverso per ciascuno dei processi sopra appena ricor-

dati, essi hanno tutti una caratteristica comune: sono perturbazioni fisiche che sono

prodotte in un punto nello spazio, si propagano attraverso lo spazio, e producono un

effetto successivamente in un altro punto.

In generale, si dice che un’onda e generata dalla propagazione spontanea di una

perturbazione in un mezzo soggetto a forze di richiamo, forze cioe che tendono a ri-

portare nella posizione di equilibrio un elemento del mezzo che ne viene allontanato.

Per elemento, intendiamo qui una porzione del mezzo che abbia dimensioni trascurabili

rispetto a quelle della perturbazione. Le perturbazioni possono essere di diverso tipo:

a) impulsive: sono generate da un fenomeno di durata limitata

b) persistenti: l’azione che origina la perturbazione e continua. Fra queste, molto

importanti sono quelle periodiche, dovute a sistemi oscillanti

Bisogna sottolineare che in un’onda, quello che si propaga non e il mezzo stesso, ma

energia lungo il mezzo. Nel fenomeno ondulatorio, non si ha quindi propagazione di

materia!

Esistono due tipi di onde: quelle meccaniche e quelle elettromagnetiche. Qui ci

limiteremo allo studio delle onde meccaniche che si propagano in mezzi elastici, come

ad esempio i corpi solidi e i fluidi che, se sottoposti a forze, subiscono deformazioni. Le

onde elettromagnetiche si possono propagare anche nel vuoto e vanno quindi studiate

a parte.

Si distinguono anche le onde longitudinali da quelle trasversali. Le onde longitu-

dinali sono quelle in cui le particelle del mezzo oscillano nella direzione in cui si pro-

35

Page 36: Corso di Fisica 3 ONDE E ELETTROMAGNETISMO · funzionamento di specchi, prismi, lenti e dei sistemi ottici costruiti con essi. In generale, nell’attraversamento di una super cie

3.2. IL MOTO ONDULATORIO 36

paga l’onda (Fig.(3.1)a). Le onde trasversali sono quelle in cui le particelle del mezzo

oscillano in direzione perpendicolare alla direzione in cui si propaga l’onda (Fig.(3.1)b).

Figura 3.1: Onda longitudinale (a) e onda trasversale (b) su una molla in tre istanti

successivi

3.2 Il moto ondulatorio

3.2.1 Descrizione matematica

Si consideri una funzione ξ = f(x) rappresentata graficamente dalla curva continua

nella figura seguente (Fig.3.2).

Figura 3.2: Traslazione senza distorsione di una funzione ξ(x).

Se ciascun punto della curva e traslato rigidamente della distanza ∆x = a alla

destra (o alla sinistra), allora il valore della funzione in ciascun nuovo punto, diciamo

x’, e lo stesso del valore della funzione a x′− a (o x′+ a). Quindi f(x− a) rappresenta

la curva spostata senza deformazione verso destra della distanza a e analogamente

f(x+ a) rappresenta la stessa curva spostata a sinistra della distanza a.

Si consideri ora uno spostamento continuo della curva f(x). Quando la curva viene

spostata della distanza ∆x dalla posizione della curva all’istante t = 0 nel tempo ∆t

con una velocita v, tale che a = v∆t = vt (dove v e chiamata la velocita di fase),

allora un impulso sta viaggiando lungo la direzione X (Fig.3.3).

Quindi un’espressione matematica della forma:

ξ(x, t) = f(x± vt) (3.1)

SUPSI-DTI Corso di Fisica e Modellistica Prof. Andrea Danani

Page 37: Corso di Fisica 3 ONDE E ELETTROMAGNETISMO · funzionamento di specchi, prismi, lenti e dei sistemi ottici costruiti con essi. In generale, nell’attraversamento di una super cie

3.2. IL MOTO ONDULATORIO 37

Figura 3.3: Propagazione verso destra (a) e verso sinistra (b).

e adatta a descrivere una perturbazione fisica che viaggia o si propaga senza defor-

mazione lungo la parte positiva (o negativa) dell’asse X; questa propagazione e un

aspetto caratteristico del moto ondulatorio. La quantita ξ(x, t) puo rappresentare un

gran numero di diverse quantita fisiche, come la deformazione in un solido, la pressione

in un gas, un campo elettrico o magnetico, ecc.

Un caso particolarmente importante e quello detto armonico, nel quale ξ(x, t) e una

funzione sinusoidale tale che

ξ(x, t) = ξ0 sin k(x− vt) (3.2)

Che cosa rappresenta la quantita k? Quando si sostituisce al valore x il valore x+2π/k,

la funzione ξ(x, t) assume lo stesso valore:

ξ(x+2π

k, t) = ξ0 sin(k(x− vt) + 2π) = ξ0 sin k(x− vt) = ξ(x, t) (3.3)

Quindi λ = 2π/k rappresenta la periodicita spaziale della curva e viene denominata

lunghezza d’onda. La grandezza k rappresenta il numero di lunghezze d’onda nella

distanza 2π ed e chiamato numero d’onda. Percio :

ξ(x, t) = ξ0 sin k(x− vt) = ξo sin2π

λ(x− vt) = 0 (3.4)

rappresenta un’onda sinusoidale o armonica di lunghezza d’onda λ che si propaga alla

destra lungo l’asse X con una velocita di fase v. La forma piu usata dell’equazione

precedente e la seguente:

ξ(x, t) = ξ0 sin(kx− ωt) (3.5)

SUPSI-DTI Corso di Fisica e Modellistica Prof. Andrea Danani

Page 38: Corso di Fisica 3 ONDE E ELETTROMAGNETISMO · funzionamento di specchi, prismi, lenti e dei sistemi ottici costruiti con essi. In generale, nell’attraversamento di una super cie

3.2. IL MOTO ONDULATORIO 38

dove la grandezza ω e detta pulsazione (o frequenza angolare) dell’onda ed e in relazio-

ne con il periodo T = λ/v tramite ω = 2π/T . Il periodo T e il tempo impiegato per

compiere un’oscillazione completa. Importante e pure la frequenza f (o ν) dell’onda,

che fornisce il numero di oscillazioni al secondo. In particolare si ha

f =1

T=

ω

2πe v = λ f (3.6)

Figura 3.4: Onda armonica che si propaga verso destra. L’onda percorre uno spazio λ

in un tempo T

SUPSI-DTI Corso di Fisica e Modellistica Prof. Andrea Danani

Page 39: Corso di Fisica 3 ONDE E ELETTROMAGNETISMO · funzionamento di specchi, prismi, lenti e dei sistemi ottici costruiti con essi. In generale, nell’attraversamento di una super cie

3.2. IL MOTO ONDULATORIO 39

3.2.2 Equazione differenziale del moto ondulatorio

Un secondo passo e un’indagine su come determinare quando un dato campo dipen-

dente dal tempo si propaga come un’onda senza distorsione. I campi associati con

ogni processo fisico sono regolati da leggi dinamiche che sono caratteristiche di ciascun

processo in esame. Queste leggi possono essere espresse sotto forma di equazioni diffe-

renziali. Possiamo quindi esaminare la possibilita di trovare una equazione differenziale

applicabile a tutti i tipi di moto ondulatorio. Quindi ogni volta che le sue proprieta

fisiche mostrano che un campo particolare soddisfa una tale equazione, possiamo esse-

re sicuri che il campo si propaga attraverso lo spazio con una velocita definita e senza

distorsione. L’equazione, che incontreremo piu volte, la quale descrive un moto ondu-

latorio che si propaga con una velocita definita v e senza distorsione lungo la direzione

+X o lungo −X e∂2ξ

∂t2= v2 ∂

∂x2(3.7)

Questa espressione e detta l’equazione differenziale del moto ondulatorio. La solu-

zione generale dell’equazione (3.7) e della forma dell’equazione (3.4 ):

ξ(x, t) = f1(x− vt) + f2(x+ vt). (3.8)

Quindi la soluzione generale dell’equazione (3.7) puo

Figura 3.5: Onde sovrapposte

essere espressa come sovrapposizione di due moti on-

dulatori propagantesi in direzione opposte. Natural-

mente per un’onda che si propaga in una direzione, e

richiesta soltanto una delle due funzioni che appaiono

nella equazione (3.8). Tuttavia quando (per esempio)

vi e un’onda incidente nella direzione + X ed un’onda

riflessa nella direzione -X, si deve usare la forma gene-

rale dell’ equazione (vedi Fig.3.5). Si puo dimostrare

in generale, per derivazione diretta, che un’espressio-

ne avente la forma dell’equazione (3.8) e una soluzione

dell’equazione dell’onda (3.7). Utilizzando le relazioni

per ω e k, verifica che l’equazione (3.8) e soddisfatta

dall’onda sinusoidale (armonica)

ξ(x, t) = ξ0 sin(kx− ωt). (3.9)

SUPSI-DTI Corso di Fisica e Modellistica Prof. Andrea Danani

Page 40: Corso di Fisica 3 ONDE E ELETTROMAGNETISMO · funzionamento di specchi, prismi, lenti e dei sistemi ottici costruiti con essi. In generale, nell’attraversamento di una super cie

3.3. ESEMPI DI ONDE MECCANICHE 40

3.3 Esempi di onde meccaniche

3.3.1 Introduzione

Per esaminare l’argomento in modo piu generale, si consideri una grandezza fisica

descritta da un certo campo. Abbiamo visto che questo campo puo rappresentare

un campo elettromagnetico, la deformazione in una molla, la pressione in un gas, la

tensione in un solido, lo spostamento trasversale di una corda, ecc. Si supponga che

le condizioni in un punto divengano dipendenti dal tempo, cosicche si verifica una

perturbazione dello stato fisico del sistema in quel punto. Le proprieta fisiche del

sistema comportano la propagazione di questa perturbazione attraverso lo spazio e la

perturbazione altera le condizioni statiche in altri punti.

Si consideri come esempio la superficie libera di un liquido. Il campo in questo caso e

lo spostamento di ciascun punto della superficie rispetto alla posizione di equilibrio. In

condizioni di equilibrio o statiche la superficie libera di un liquido e piana ed orizzontale;

ma se in un punto le condizioni alla superficie sono perturbate gettando un sasso nel

liquido, e ben noto che questa perturbazione si propaga in tutte le direzioni lungo

la superficie del liquido. Per determinare il meccanismo della propagazione e la sua

velocita , si deve analizzare come lo spostamento di un punto alla superficie del liquido

influenza il resto della superficie. Questa analisi produce le equazioni dinamiche del

processo. Queste equazioni quindi ci danno la possibilita di ottenere informazioni

quantitative sulla variazione nello spazio e nel tempo della perturbazione. Vedremo

ora alcuni esempi specifici: la maggior parte degli esempi riguardera le onde elastiche

in un mezzo materiale. Nella maggior parte di questi casi la struttura molecolare della

materia sara trascurata e si fara l’ipotesi di un mezzo continuo. Questa ipotesi e valida

fino a che la lunghezza d’onda e grande confrontata con la separazione intermolecolare

del mezzo che sostiene il moto ondulatorio.

Figura 3.6: Onde elastiche in una molla (a), un gas (b) e in una corda (c)

SUPSI-DTI Corso di Fisica e Modellistica Prof. Andrea Danani

Page 41: Corso di Fisica 3 ONDE E ELETTROMAGNETISMO · funzionamento di specchi, prismi, lenti e dei sistemi ottici costruiti con essi. In generale, nell’attraversamento di una super cie

3.3. ESEMPI DI ONDE MECCANICHE 41

3.3.2 Onde trasversali in una corda

Figura 3.7: Forze su un elemento dx di una corda spostata trasversalmente

Si consideri una corda soggetta alla tensione fissata T . In condizioni di equilibrio,

la corda e rettilinea. Si supponga ora che la corda sia spostata perpendicolarmente

alla sua lunghezza di una quantita relativamente piccola rispetto alla lunghezza L.

Questa approssimazione e necessaria, affinche la corda rimanga in un regime elastico,

dove non subisce una deformazione troppo forte. Consideriamo quindi un elemento

AB della corda, di lunghezza dx, che si sia spostato di una distanza ξ dalla posizione

di equilibrio (in cui ξ = 0). A ciascun estremo A e B dell’elemento, e applicata

una forza tangenziale T dovuta alla trazione esercitata dalla corda (Fig.3.7). A causa

della curvatura della corda, queste due forze pur avendo la stessa intensita non hanno

la stessa direzione. Un’analisi delle forze sull’elemento AB (di massa dm) fornisce le

seguenti equazioni:Fx = T (cosα′ − cosα) = m · axFy = T (sinα′ − sinα) = m · ay

(3.10)

Dato che la curvatura in esame e piccola, i due angoli α e α′ sono piccoli e molto vicini.

In questo caso si puo verificare che:

sinα′ − sinα ≈ α′ − α ≈ tanα′ − tanα

cosα′ − cosα ≈ 0(3.11)

da cui si ricava cheFx = m · ax ≈ 0

Fy = m · ay ≈ T (tanα′ − tanα)(3.12)

Come si puo notare, la forza risultante nella direzione orizzontale e trascurabile ri-

spetto a quella nella direzione verticale. Per questo motivo, l’onda in una corda e di

tipo trasversale, poiche le oscillazioni degli elementi di corda avvengono in direzione

perpendicolare rispetto alla direzione di propagazione dell’onda, che e diretta lungo la

corda. Dato che tanα e per definizione la pendenza della corda, possiamo associarla

alla derivata ∂ξ/∂x, da cui si ottiene

Fy = T∂

∂x

(∂ξ

∂x

)dx = T

∂2ξ

∂x2dx (3.13)

SUPSI-DTI Corso di Fisica e Modellistica Prof. Andrea Danani

Page 42: Corso di Fisica 3 ONDE E ELETTROMAGNETISMO · funzionamento di specchi, prismi, lenti e dei sistemi ottici costruiti con essi. In generale, nell’attraversamento di una super cie

3.3. ESEMPI DI ONDE MECCANICHE 42

Questa forza deve essere uguale alla massa dell’elemento di corda AB moltiplicata per

l’accelerazione verticale pari a ∂2ξ/∂t2. Supponendo che µ = M/L sia la densita

lineare della corda (vale a dire la massa per unita di lunghezza), la massa dell’elemento

e data da µdx. L’equazione (3.12) diventa percio

(µdx)∂2ξ

∂t2= T

∂2ξ

∂x2dx (3.14)

ossia∂2ξ

∂t2=

T

µ

∂2ξ

∂x2. (3.15)

Quindi si ottiene l’equazione (3.7), e se ne deduce che una perturbazione trasversale

lungo una corda elastica si propaga con una velocita

v =

√T

µ(3.16)

nel caso in cui l’ampiezza e piccola rispetto alla lunghezza della corda.

3.3.3 Onde elastiche in una sbarra

Se si perturba l’estremo di una sbarra solida, un’onda elastica si propaghera lungo

la sbarra. Vediamo di capire come la velocita di propagazione della perturbazione

dipende dalle caratteristiche fisiche della sbarra. Supponiamo che la sbarra abbia

sezione costante A e sia sottoposta a una forza F lungo il suo asse. Questa forza puo

variare lungo l’asse della sbarra. La tensione normale σ in una sezione della sbarra

e definita come la forza per unita di area che agisce perpendicolarmente alla sezione,

quindi:

σ =F

A(3.17)

Sotto l’azione delle forze presenti lungo la sbarra, ogni sezione subisce uno sposta-

mento ξ parallelo all’asse. Tralasciamo il caso dello spostamento rigido (ξ costante) e

supponiamo che ξ dipenda da x.

SUPSI-DTI Corso di Fisica e Modellistica Prof. Andrea Danani

Page 43: Corso di Fisica 3 ONDE E ELETTROMAGNETISMO · funzionamento di specchi, prismi, lenti e dei sistemi ottici costruiti con essi. In generale, nell’attraversamento di una super cie

3.3. ESEMPI DI ONDE MECCANICHE 43

Figura 3.8: Onde longitudinali in una sbarra

Prendiamo due sezioni A e A′ separate da una distanza dx (Fig. 3.8). La sezione

A si spostera di ξ e A′ di ξ′ sotto l’azione delle forze in gioco. La distanza fra le due

sezioni, dopo la deformazione, sara quindi:

dx+ (ξ′ − ξ) = dx+ dξ (3.18)

Definiamo ora la dilatazione normale ε nella sbarra come la deformazione lungo l’asse

riferita all’unita di lunghezza, da cui si deduce

ε =∂ξ

∂x(3.19)

Tra la tensione normale σ e la dilatazione normale ε, esiste una relazione detta legge

di Hooke, che stabilisce che

σ = E ε , (3.20)

dove E e detto modulo di elasticita di Young. Le legge di Hooke (3.20) rappresenta

con buona approssimazione il comportamento elastico di un materiale fintantoche le

deformazioni sono piccole. Usando le definizioni (3.19) e (3.20), si ottiene che

F = EA∂ξ

∂x. (3.21)

Nel caso di una sbarra (o un filo) in equilibrio con un estremo fisso (Fig. 3.9) e l’altro

estremo sottoposto a una forza costante F , la forza dev’essere uguale in ogni sezione e

si ottiene che la deformazione ξ dipende linearmente dalla sezione x.

Figura 3.9: Sbarra con un estremo fisso

Infatti: ∫ ξ

0

dξ =F

EA

∫ x

0

dx ossia ξ =F

EAx . (3.22)

SUPSI-DTI Corso di Fisica e Modellistica Prof. Andrea Danani

Page 44: Corso di Fisica 3 ONDE E ELETTROMAGNETISMO · funzionamento di specchi, prismi, lenti e dei sistemi ottici costruiti con essi. In generale, nell’attraversamento di una super cie

3.3. ESEMPI DI ONDE MECCANICHE 44

In particolare, la deformazione all’estremo libero si ottiene ponendo x = L in (3.22),

da cui l = FL/EA. Il modulo di Young viene generalmente dedotto sperimentalmente

usando questa relazione.

Cosa succede se la sbarra non e in equilibrio e la forza varia lungo la sbarra? La

forza risultante sull’elemento dx (Fig. 3.8) e dato da:

F ′ − F = dF =∂F

∂xdx . (3.23)

Supponendo che ρ sia la densita del materiale, la massa dell’elemento dx varra dm =

ρdV = ρAdx e la sua accelerazione sara ∂2ξ/∂t2. Dalla legge di Newton si ottiene:

∂F

∂xdx = ρAdx

∂2ξ

∂t2ossia ∂F∂x = ρA

∂2ξ

∂t2(3.24)

Entrambi i campi che entrano in questo problema, vale a dire ξ e F , sono funzioni sia

del tempo che della posizione e sono messi in relazione dalle equazioni (3.21) e (3.24).

Derivando la prima rispetto a x, abbiamo

∂F

∂x= EA

∂2ξ

∂x2, (3.25)

e sostituendo questo risultato in (3.24), si ottiene

∂2ξ

∂t2=Y

ρ

∂2ξ

∂x2. (3.26)

Si tratta di un’equazione d’onda analoga a (3.7), e la velocita di propagazione della

deformazione lungo la sbarra e data da:

v =

√E

ρ. (3.27)

Terminiamo il paragrafo notando che entrambi i campi ξ e F rappresentati dall’onda

sono orientati lungo la direzione di propagazione dell’onda, vale a dire l’asse della

sbarra. Si tratta quindi di un’onda longitudinale.

SUPSI-DTI Corso di Fisica e Modellistica Prof. Andrea Danani

Page 45: Corso di Fisica 3 ONDE E ELETTROMAGNETISMO · funzionamento di specchi, prismi, lenti e dei sistemi ottici costruiti con essi. In generale, nell’attraversamento di una super cie

3.3. ESEMPI DI ONDE MECCANICHE 45

3.3.4 Altri esempi di onde meccaniche

In questa sezione, segnaliamo senza entrare nel dettaglio un paio di esempi che possono

essere analizzati con metodi analoghi a quelli usati per la corda elastica e la sbarra.

Come primo caso, segnaliamo le onde di pressione in un gas a cui appartiene

il suono. Modificando l’equilibrio del gas variandone la pressione, il gas tendera a ri-

portarsi all’equilibrio, generando delle onde di pressione che saranno automaticamente

associate a delle onde di densita . Dato che le molecole si muovono avanti e indietro

rispetto alla loro posizione di equilibrio, si parla di onda longitudinale, poiche le oscil-

lazioni locali avvengono nella stessa direzione della propagazione dell’onda. L’analisi

di questo caso, un po’ piu complessa di quella della corda, porta all’equazione d’onda

con una velocita data dalla seguente formula:

v =

√γ P

ρ(3.28)

dove γ e l’esponente adiabatico caratteristico per ogni gas.

Il secondo caso trattato e quello delle onde superficiali in un liquido. Si tratta

delle onde piu familiari, ma l’aspetto matematico e fra i piu complessi. Infatti, le onde

in un liquido sono una miscela di onde trasversali e longitudinali e le molecole compiono

della traiettorie chiuse attorno all’equilibrio (Fig. 3.14).

Figura 3.10: Spostamento delle molecole dovuto a un’onda superficiale in un liquido

Inoltre molti parametri giocano un ruolo nell’analisi del problema, quali la tensione

superficiale Υ, la profondita h del liquido e la sua densita ρ. L’espressione generale per

la velocita di propagazione di onde superficiali in un liquido e

v =

√(gλ

2π+

2πΥ

ρλ

)tanh

2πh

λ(3.29)

dove tanhx = (ex − e−x)/(ex + e−x).

Un aspetto interessante dell’equazione (3.29) e che la velocita di propagazione di-

pende dalla lunghezza d’onda, situazione non incontrata nei due casi precedenti. In

questi casi si parla di dispersione. Dato che v = f λ, si conclude che la velocita di

propagazione in un mezzo dispersivo dipende dalla frequenza dell’onda.

Vediamo tre casi limiti.

SUPSI-DTI Corso di Fisica e Modellistica Prof. Andrea Danani

Page 46: Corso di Fisica 3 ONDE E ELETTROMAGNETISMO · funzionamento di specchi, prismi, lenti e dei sistemi ottici costruiti con essi. In generale, nell’attraversamento di una super cie

3.4. EFFETTO DOPPLER 46

a) Quando λ e h sono grandi, tanh 2πhλ≈ 1 e il termine 2πΥ

ρλnell’equazione(3.29) puo

essere trascurato. Si ha che v = gλ2π

. Queste onde sono dette onde di gravita ,

dove la velocita non dipende dalle proprieta del liquido ma solo dalla lunghezza

d’onda.

b) Se λ e molto piccola e h rimane grande, il termine dominante e il secondo dell’e-

quazione (3.29) e la velocita e data da

v =

√2πΥ

ρλ(3.30)

Queste onde sono dette onde capillari o increspature. Si tratta di onde che si

osservano quando un vento molto leggero soffia sopra l’acqua, o quando un liquido

in un contenitore e sottoposto a vibrazioni di alta frequenza e piccola ampiezza.

Maggiore e la lunghezza d’onda, piu lenta e la propagazione.

c) Se h� λ, tanhx ≈ x e il termine 2πΥ/ρλ puo essere trascurato se λ e sufficiente-

mente grande. Quindi

v =

√gλ

2π· 2πh

λ=√g · h (3.31)

In questo caso, non si ha dispersione, e la velocita di propagazione e funzione solo

della profondita .

3.4 Effetto Doppler

Nel 1842, il fisico austriaco C. Doppler scopri che l’altezza di un suono non e determi-

nata dalla frequenza della sorgente sonora, bensi dalla frequenza con la quale le onde

sonore colpiscono l’orecchio dell’osservatore. E’ percio necessario tenere conto del moto

relativo fra la sorgente e l’osservatore. Esamineremo ora due casi, e a questo proposito

definiamo le seguenti grandezze:

• λ: lunghezza d’onda del suono nell’aria

• c: velocita del suono rispetto all’aria

• fs: frequenza con cui vibra la sorgente (frequenza propria)

• fo: frequenza percepita dall’osservatore

SUPSI-DTI Corso di Fisica e Modellistica Prof. Andrea Danani

Page 47: Corso di Fisica 3 ONDE E ELETTROMAGNETISMO · funzionamento di specchi, prismi, lenti e dei sistemi ottici costruiti con essi. In generale, nell’attraversamento di una super cie

3.4. EFFETTO DOPPLER 47

Figura 3.11: Effetto Doppler prodotto da una sorgente in movimento sulla superficie

di un liquido

3.4.1 Sorgente in moto rispetto all’osservatore

In questo caso, durante l’emissione di due fronti d’onda successivi (e quindi durante un

periodo), la sorgente compie uno spazio (±vs · T ). Percio, l’osservatore misurera una

lunghezza d’onda λ′ diversa da quella propria. Dato che la velocita dell’onda dipende

solo dal mezzo di propagazione, l’osservatore ne dedurra una frequenza diversa da

quella propria fs. In particolare, si ottiene:

λ′ = λ± vs · T = c · T ′ = c

f0

=⇒ c

fs− vsfs

=c

f0

(3.32)

da cui risulta

fo =1

1± vOc

fs (3.33)

dove il segno + si riferisce all’allontanamento e il segno − all’avvicinamento.

3.4.2 Osservatore in moto rispetto alla sorgente

Poniamo che l’osservatore si muova verso la sorgente ferma con velocita vo. In questo

caso, λ rimane uguale, ma l’osservatore percepisce un maggior numero di creste al

secondo dato che la sua velocita si somma a quella dell’onda, per cui rileva un periodo

piu breve. Questo implica

λ = (vO + c)T ′ = c T =⇒ fo =c

c+ vOfs (3.34)

Se l’osservatore si allontana, bisogna sottrarre alla sua velocita quella dell’onda.

Bastera porre in (3.34) −v0 al posto di v0, e si ottiene nel caso generale:

fo =(

1∓ vOc

)fs (3.35)

dove il segno − si riferisce all’allontanamento e il segno + all’avvicinamento.

SUPSI-DTI Corso di Fisica e Modellistica Prof. Andrea Danani

Page 48: Corso di Fisica 3 ONDE E ELETTROMAGNETISMO · funzionamento di specchi, prismi, lenti e dei sistemi ottici costruiti con essi. In generale, nell’attraversamento di una super cie

3.5. IL PRINCIPIO DI SOVRAPPOSIZIONE 48

Un esempio familiare e la variazione dell’altezza del suono dovuto al passaggio di

un treno, quando questo si avvicina e poi si allontana. Un altro esempio noto e il

radar che la polizia adopera per misurare la velocita di un automobile: le onde emesse

dal radar vengono riflesse dall’ auto in moto che funge quindi da sorgente in moto.

Citiamo ancora come ultimo esempio il famoso spostamento verso il rosso (red shift)

della luce proveniente da galassie lontane. Poiche le galassie si allontanano, la luce che

emettono viene spostata verso le lunghezze d’onda piu grandi, corrispondenti al rosso.

Misurando questo spostamento, si riesce a determinare la velocita con cui le galassie si

allontanano da noi.

3.5 Il principio di sovrapposizione

3.5.1 Introduzione

Incominciamo con un esperimento. Una lunga molla, appoggiata su un tavolo, e trat-

tenuta agli estremi in modo che sia leggermente tesa. Produciamo dapprima, dando

una breve scossa alle due estremita , due impulsi all’incirca uguali e volti dalla stessa

parte. Essi si muovono incontro e dove si sovrappongono la molla si rigonfia notevol-

mente. Dopo l’incontro le due creste riprendono le loro forme originarie continuando a

propagarsi lungo la molla. Produciamo ora due impulsi di grandezza all’incirca uguale

ma volti da parti opposte. Questa volta una cresta si muove incontro a una concavita

, e dove le due perturbazioni si sovrappongono l’elongazione della molla e praticamen-

te nulla. Dopo il loro incontro le due perturbazioni riprendono la forma originaria e

continuano a propagarsi lungo la molla come cresta e come concavita .

Da queste constatazioni si ricava che due onde si sovrappongono senza alterarsi.

L’ampiezza dell’onda risultante nella zona di sovrapposizione si ottiene componendo

vettorialmente le elongazioni delle singole onde.

Il principio di sovrapposizione non vale solo per le onde su una molla ma per ogni

tipo di onda. E’ possibile constatarne la validita per le onde sonore notando che le

singole note attraversano imperturbate una zona rumorosa e continuano a propagarsi

come se gli altri suoni non ci fossero. Vediamo ora qualche applicazione del principio

di sovrapposizione.

3.5.2 Interferenza di onde prodotte da due sorgenti in fase

Una conseguenza diretta del principio di sovrapposizione e il fenomeno dell’interferenza.

Esso avviene quando due o piu moti ondosi coincidono nello spazio e nel tempo. Come

esempio, si considerino due sorgenti puntiformi S1 e S2 (Fig. 3.13) che oscillano in fase

con la medesima frequenza angolare ω e creano onde di superficie con ampiezze ξ1 e ξ2.

Le rispettive equazioni sono

ξ1(r1, t) = A1 sin(kr1 − ωt) = A1 ei(kr1−ωt)

ξ2(r2, t) = A2 sin(kr2 − ωt) = A2 ei(kr2−ωt)(3.36)

SUPSI-DTI Corso di Fisica e Modellistica Prof. Andrea Danani

Page 49: Corso di Fisica 3 ONDE E ELETTROMAGNETISMO · funzionamento di specchi, prismi, lenti e dei sistemi ottici costruiti con essi. In generale, nell’attraversamento di una super cie

3.5. IL PRINCIPIO DI SOVRAPPOSIZIONE 49

Figura 3.12: Due impulsi in una corda che si muovono in versi opposti con spostamenti

che si rafforzano (a) e che si elidono (b)

Figura 3.13: (a) Linee nodali e ventrali risultanti dall’interferenza di onde prodotte

da due sorgenti identiche. (b) Figura di interferenza effettiva di onde sulla superficie

dell’acqua.

SUPSI-DTI Corso di Fisica e Modellistica Prof. Andrea Danani

Page 50: Corso di Fisica 3 ONDE E ELETTROMAGNETISMO · funzionamento di specchi, prismi, lenti e dei sistemi ottici costruiti con essi. In generale, nell’attraversamento di una super cie

3.5. IL PRINCIPIO DI SOVRAPPOSIZIONE 50

dove r1 e r2 sono le distanze di un punto P generico da S1 e S2 rispettivamente. Si

osservi che benche le due sorgenti siano identiche, esse non produco no la medesima

ampiezza al punto P se r1 e r2 sono diversi. In seguito, porremo per semplic ita che

A1 = A2 = A. Usando la formula sinx+ sin y = 2 sin(x+y2

) cos(x−y2

), la somma delle

due onde nel punto P fornisce

(ξ1 + ξ2) (P, t) = 2A cosk(r1 − r2)

2sin

(k

2(r1 + r2)− ωt

). (3.37)

e l’onda risultante e quindi ancora un’onda armonica di ampiezza 2A cos k(r1 − r2)/2.

L’ampiezza massima si ottiene quando cos k(r1 − r2)/2 = 1, vale a dire

k(r1 − r2)

2=

2π(r1 − r2)

2λ= nπ , ⇒ r1 − r2 = nλ . (3.38)

In questo caso si parla di interferenza costruttiva mentre si parla di interferenza

distruttiva quando le due onde si elidono, cioe quando cos k(r1 − r2)/2 = 0 e si ha

k(r1 − r2)

2=

2π(r1 − r2)

2λ= (2n− 1)

π

2⇒ r1 − r2 = (2n− 1)

λ

2. (3.39)

Riassumendo:

(1) Interferenza costruttiva =⇒ r1 − r2 = nλ

(2) Interferenza distruttiva =⇒ r1 − r2 = (n− 12)λ

(3.40)

L’equazione r1−r2 =| PS1−PS2 | costante definisce un’iperbole con i fuochi in S1 e S2

e le linee definite dai punti P che soddisfano la condizione (2) sono dette linee nodali.

Lontano dalle sorgenti, le linee nodali sono quasi rettilinee poiche coincidono di fatto

con gli asintoti dell’iperbole. Percio , ponendo d come la distanza fra le sorgenti:

| PS1 − PS2 |∼=| AS1 |∼= d sin θ =⇒ sin θ =

(n− 1

2

d(3.41)

Questa equazione permette di determinare l’inclinazione delle linee nodali a grandi

distanze, ponendo successivamente n = 1, 2, 3, . . . . Il numero massimo per n per cui

l’equazione e ancora risolvibile (sin θ ≤ 1) determina il numero di linee nodali presente.

Per simmetria, si otterra la stessa situazione facendo una simmetria assiale rispetto

all’asse verticale passante fra le due sorgenti.

3.5.3 Le onde stazionarie

Consideriamo ora il caso in cui una corda abbia un’estremita fissato nel punto O,

come indicato nella Fig. 13. Un’onda trasversale incidente, in moto verso sinistra, di

equazione

ξ(x, t) = ξ0 sin(kx+ ωt) (3.42)

SUPSI-DTI Corso di Fisica e Modellistica Prof. Andrea Danani

Page 51: Corso di Fisica 3 ONDE E ELETTROMAGNETISMO · funzionamento di specchi, prismi, lenti e dei sistemi ottici costruiti con essi. In generale, nell’attraversamento di una super cie

3.5. IL PRINCIPIO DI SOVRAPPOSIZIONE 51

Figura 3.14: Cambiamento di fase di un’onda riflessa in una corda con una estremita

viene riflessa in O e produce una nuova onda che si propaga ora verso destra, con

equazione

ξ(x, t) = ξ0′ sin(kx− ωt). (3.43)

Lo spostamento di un punto della corda e l’effetto della sovrapposizione delle due

onde, vale a dire

ξ(x, t) = ξ0 sin(kx+ ωt) + ξ′0 sin(kx− ωt). (3.44)

Nel punto O, x = 0, e abbiamo

ξ(x = 0 , t) = (ξ0 − ξ′0) sinωt . (3.45)

Ma dato che il punto O e fisso, significa che ξ(x = 0 , t) = 0 ad ogni istante. Percio

ξ0 = ξ′0. Percio l’equazione (3.44) diventa

ξ(x, t) = ξ0(sin(kx+ ωt) + sin(kx− ωt). (3.46)

da cui si ottiene

ξ(x, t) = 2ξ0 sin kx cosωt . (3.47)

Questa equazione non rappresenta piu un’onda in movimento, ma piuttosto un’oscilla-

zione la cui ampiezza, variabile da punto a punto, e data da

A(x) = 2ξ0 sin kx . (3.48)

Come si puo notare, esistono dei punti per cui l’interferenza delle due onde e distruttiva

e l’ampiezza e sempre nulla, come nel caso delle sorgenti puntiformi. In questo caso

SUPSI-DTI Corso di Fisica e Modellistica Prof. Andrea Danani

Page 52: Corso di Fisica 3 ONDE E ELETTROMAGNETISMO · funzionamento di specchi, prismi, lenti e dei sistemi ottici costruiti con essi. In generale, nell’attraversamento di una super cie

3.5. IL PRINCIPIO DI SOVRAPPOSIZIONE 52

pero non si hanno delle linee ma un insieme discreto di punti, detti nodi, che si trovano

in

x =1

2n λ , n = 1, 2, . . . (3.49)

I nodi sono quindi separati da una distanza pari a mezza lunghezza d’onda.

Supponiamo ora di fissare anche l’altra estremita della corda, nel punto x = L.

Tale condizione significa che il punto x = L deve essere un nodo e che deve soddisfare

la condizione kL = nπ. Usando l’equazione (3.49), otteniamo

L =1

2nλ ossia λ =

2L

n= 2 = L ,

2L

2,

2L

3, . . . (3.50)

Questa seconda condizione limita automaticamente le lunghezze d’onda delle onde che

possono propagarsi su questa corda ai valori forniti dall’equazione (3.50). Ricordando

che la velocita di propagazione delle onde lungo una corda sottoposta a una tensione

T e di densita lineare µ e data dall’espressione (3.16)

v =

√T

µ, (3.51)

le frequenze di oscillazione permesse sono determinate da

fn =1

T=

v

λ=

n

2L

√T

µ, n = 1, 2, . . . (3.52)

La frequenza

f1 =1

2L

√T

µ(3.53)

e detta frequenza fondamentale. Le altre frequenze di oscillazione possibili (dette armo-

niche) sono tutte multipli di quella fondamentale. Si puo affermare che le frequenze (e

quindi anche le lunghezze d’onda) sono quantizzate, e che la quantizzazione e l’effetto

delle condizioni al contorno imposte alle due estremita della corda.

SUPSI-DTI Corso di Fisica e Modellistica Prof. Andrea Danani

Page 53: Corso di Fisica 3 ONDE E ELETTROMAGNETISMO · funzionamento di specchi, prismi, lenti e dei sistemi ottici costruiti con essi. In generale, nell’attraversamento di una super cie

3.6. ANALISI E SINTESI ARMONICA 53

3.6 Analisi e sintesi armonica

3.6.1 Il principio di Fourier

Nel 1801, il matematico francese Fourier enuncio un famoso teorema.

Teorema di Fourier: una funzione periodica f(t) di periodo T puo essere scom-

posta nella somma seguente di funzioni armoniche:

f(t) = a0 + a1 sinωt+ a2 sin 2ωt+ · · ·+ b1 cosωt+ b2 cos 2ωt+ . . . (3.54)

dove ω = 2π/T .

Questa somma e detta serie di Fourier della funzione f(t), dove la frequenza ω e

detta fondamentale e le frequenze multiple 2ω, 3ω , . . . sono dette armoniche. Questo

fatto riveste un’importanza fondamentale, poiche ogni onda puo essere scomposta, in un

unico modo, in onde armoniche che sovrapposte formano nuovamente l’onda iniziale.

3.6.2 Il timbro degli strumenti

Se due strumenti diversi suonano la stessa nota, il nostro orecchio percepisce due suoni

diversi. In questo caso si dice che le due note hanno un timbro diverso. Da cosa

dipende il timbro? Due strumenti, sebbene producano vibrazioni alla stessa frequenza

fondamentale, producono anche delle armoniche, le cui intensita relative dipendono

strettamente dallo strumento. Senza la produzione di armoniche, tutti gli strumenti

avrebbero lo stesso timbro. A questo proposito, bisogna introdurre la nozione di spettro

che mette in relazione le frequenze presenti nel suono e la loro relativa densita di energia,

ovvero quanto di quella componente di frequenza c’e nel suono.

La figura (3.15) mostra i grafici dell’onda di pressione in funzione del tempo per un

diapason, un clarinetto e una cornetta che suonano tutti la stessa nota.

Figura 3.15: Forma d’onda (a) di un diapason, (b) di un clarinetto e (c) di una cornetta,

con uguale intensita e frequenza

Come si puo vedere, queste tre funzioni sono tutte periodiche, e possiedono lo stesso

periodo e quindi la stessa frequenza, ma solo il diapason e un’onda armonica pura. Le

altre due possiedono anche delle armoniche. La figura (3.16) mostra lo spettro, cioe

l’analisi delle armoniche nei tre casi precedenti.

SUPSI-DTI Corso di Fisica e Modellistica Prof. Andrea Danani

Page 54: Corso di Fisica 3 ONDE E ELETTROMAGNETISMO · funzionamento di specchi, prismi, lenti e dei sistemi ottici costruiti con essi. In generale, nell’attraversamento di una super cie

3.6. ANALISI E SINTESI ARMONICA 54

Figura 3.16: Spettro per (a) diapason, (b) clarinetto (c) cornetta

Come si puo notare, il diapason contiene solo la frequenza fondamentale (si parla di

suono puro). Il clarinetto contiene quasi nella stessa misura le prime quattro armoniche

dispari. Per la cornetta, l’energia e concentrata principalmente nella terza armonica,

che e piu presente della fondamentale.

I grafici (3.17) e (3.18) rappresentano lo spettro della stessa nota (un LA) suonata

da un pianoforte e da un violino. Come si puo notare, nel pianoforte la fondamentale

domina mentre nel violino le prime quattro armoniche sono presenti quasi in egual

misura della fondamentale. Questo fatto spiega come mai il suono del violino risulta

piu stridulo rispetto al pianoforte.

Figura 3.17: Spettro del LA suonato da un piano

SUPSI-DTI Corso di Fisica e Modellistica Prof. Andrea Danani

Page 55: Corso di Fisica 3 ONDE E ELETTROMAGNETISMO · funzionamento di specchi, prismi, lenti e dei sistemi ottici costruiti con essi. In generale, nell’attraversamento di una super cie

3.6. ANALISI E SINTESI ARMONICA 55

Figura 3.18: Spettro del LA suonato da un violino

Ecco invece lo spettro del suono generato da piatti.

Figura 3.19: Spettro del suono di un crash

Salta subito all’occhio che non abbiamo piu una distribuzione discreta (ovvero a

intervalli regolari) di frequenze, ma queste si estendono su un’ampia fascia, con la

fondamentale a circa 4000 Hz, fino ad arrivare a quasi 15000 Hz, con frequenze il cui

valore e la cui densita sembra essere quasi casuale. Questo e evidente all’orecchio:

il suono di piano e violino e infatti (quasi) periodico, mantiene fissa una nota (la

nota fondamentale), il piatto invece ha un suono molto piu irregolare. Riusciremmo a

riconoscere la nota fondamentale, ma e chiaro che c’e una serie di suoni accessori non

collegati direttamente alla fondamentale. Inoltre bisogna aggiungere che lo spettro e

tanto piu esteso quanto piu il suono e corto. In generale i suoni percussivi (e i rumori)

hanno infatti uno spettro molto esteso.

Il processo inverso dell’analisi armonica e la sintesi armonica, vale a dire la costru-

zione di una forma d’onda periodica arbitraria mediante le sue componenti armoniche.

SUPSI-DTI Corso di Fisica e Modellistica Prof. Andrea Danani

Page 56: Corso di Fisica 3 ONDE E ELETTROMAGNETISMO · funzionamento di specchi, prismi, lenti e dei sistemi ottici costruiti con essi. In generale, nell’attraversamento di una super cie

3.7. QUALCHE NOZIONE DI MUSICOLOGIA 56

Questo e il principio dei sintetizzatori elettronici (detti anche moog dal loro inventore

Robert Moog) che producono una serie di armoniche le cui ampiezze possono essere

regolate arbitrariamente. Piu armoniche vengono usate, migliore e l’approssimazio-

ne dell’onda e migliore e la qualita el sintetizzatore. I moog piu sofisticati possono

produrre suoni simili a qualsiasi strumento di un orchestra.

3.7 Qualche nozione di musicologia

3.7.1 Assonanza e dissonanza

Gia nell’antichita , era noto che due corde uguali, suonate assieme, producono un suono

gradevole quando le lunghezze vibranti stanno fra loro in rapporti interi semplici, come

ad esempio 1:2, 2:3, 3:5, ecc. Negli altri casi si ottiene una sensazione sgradevole.

Questa constatazione, di natura puramente empirica, sembra sottostare alla seguente

regola.

Due suoni danno un accordo piacevole (assonanza) quando hanno molte armoniche in

comune. In caso contrario, i suoni risultano dissonanti.

Infatti, guardando l’eq (3.53) per le frequenze di una corda in tensione, vale a dire

fn =n

2L

√T

µ, n = 1, 2, 3, . . . (3.55)

si puo notare che per un rapporto fra le lunghezze delle corde pari a 1:2, tutte le

armoniche del suono piu alto sono gia contenute nel suono piu basso. In questo modo,

si ottiene il cosiddetto unisono, detto intervallo di ottava, che risulta molto gradevole.

Se invece si ha un rapporto fra le lunghezze pari a 2:3, il rapporto fra le frequenze

fondamentali f1 e di 3:2. Si realizza in questo modo l’intervallo di quinta dove meta

delle armoniche del suono piu alto sono gia contenute nel suono piu basso.

Se i rapporti fra le lunghezze diventa piu complicato, diminuisce sempre piu il nume-

ro di armoniche in comune, e il suono risulta sempre meno gradevole. In particolare,

si constata che le combinazioni piu gradevoli si ottengono quando il rapporto fra le

frequenze e esprimibile con due numeri interi. Nell’ordine di gradevolezza, si hanno i

rapporti 1:2, 3:2, 4:3, 5:4, 6:5, 8:5 e 5:3.

Queste combinazioni definiscono i cosiddetti intervalli che come vedremo prendono

il loro nome dalla quantita di note fra le due note, compresi gli estremi. Nella tabella

seguente, vengono caratterizzati gli intervalli consonanti principali.

Da una combinazione oculata di suoni, e possibile costruire una scala musicale, in

cui gli intervalli di frequenza fra successivi suoni seguono in qualche modo le regole

empiriche viste in precedenza. Senza entrare nei dettagli, vogliamo dare nel prossimo

paragrafo qualche informazione in merito alle due scale principali, quella diatonica (o

naturale) e quella ben temperata.

SUPSI-DTI Corso di Fisica e Modellistica Prof. Andrea Danani

Page 57: Corso di Fisica 3 ONDE E ELETTROMAGNETISMO · funzionamento di specchi, prismi, lenti e dei sistemi ottici costruiti con essi. In generale, nell’attraversamento di una super cie

3.7. QUALCHE NOZIONE DI MUSICOLOGIA 57

Nome Note (in C maj) Rapporto f No semitoni

(in C maj) f/f0

Ottava C - C 2 12

Quinta C - G 3/2 7

Quarta C - F 4/3 5

Terza maggiore C - E 5/4 4

Terza minore E - G 6/5 3

Sesta maggiore C - A 5/3 9

Sesta minore E - A 8/5 8

Tabella 3.1: Intervalli consonanti principali

3.7.2 La scala diatonica o naturale

La scala diatonica e una scala musicale che utilizza intervalli di frequenza rappresentati

dai rapporti fra gli interi piu piccoli della serie armonica. Ci sono molte combinazioni

possibili di intervalli per costruire una scala diatonica. Cominciamo ad analizzare le

due principali, dette maggiore e minore.

La scala maggiore si basa sulla cosiddetta triade maggiore costituita da una

combinazione di suoni che hanno un rapporto 4:5:6 fra le loro frequenze fondamentali.

Prendendo il Do come punto di base, si sale di 5/4 (intervallo di terza maggiore) per

ottenere il Mi, e poi di 6/5 (intervallo di terza minore) ottenendo il Sol. Si ottiene

cosi un intervallo fra Sol e Do di 3/2 (intervallo di quinta). Il Do, che e la prima nota

della scala e detto la tonica, il Mi e detto la caratteristica e il Sol la dominante. Dalla

dominante, qui il Sol, e possibile costruire una seconda triade maggiore, ottenendo con

una terza maggiore la cosiddetta sensibile, il Si e con una terza minore la sopratonica,

il Re. Scendendo dal Do di una quinta, si ottiene la cosiddetta sottodominante, il Fa,

da cui con lo stesso schema si ottiene il La (la sopradominante) e poi di nuovo il Do.

In questo modo, si ottengono tutte le sette note della scala diatonica di Do, vale a dire

Do Re Mi Fa Sol La Si

che nella notazione anglossassone diventano

C D E F G A B

Queste note rappresentano di fatto i tasti bianchi nel pianoforte. D’ ora in poi useremo

spesso la seconda notazione.

Vediamo quindi che la scala maggiore si basa sulle tre triadi maggiori (4:5:6):

C,E,G o Do-Mi-Sol

G,B,D o Sol-Si-Re

SUPSI-DTI Corso di Fisica e Modellistica Prof. Andrea Danani

Page 58: Corso di Fisica 3 ONDE E ELETTROMAGNETISMO · funzionamento di specchi, prismi, lenti e dei sistemi ottici costruiti con essi. In generale, nell’attraversamento di una super cie

3.7. QUALCHE NOZIONE DI MUSICOLOGIA 58

Figura 3.20: Tasti del pianoforte

F,A,C o Fa-La-Do

Nella seguente tabella e esplicitato il risultato della costruzione:

1 98

54

43

32

53

158 2

C D E F G A B C

98

109

1615

98

109

98

1615

Tabella 3.2: Rapporti fra le frequenze nelle note della scala diatonica maggiore rispetto

alla tonica C (sopra) e per note adiacenti (sotto)

Come si puo notare dalla tabella, risultano tre tipi di intervalli per note adiacenti:

• quello maggiore (9/8),

• quello minore (10/9),

• il semitono (16/15).

Questi intervalli sono alla base della scala diatonica maggiore. Ogni scala maggiore

si basa su una nota che fungera da tonica e dalla sequenza di intervalli indicati nella

prima riga della tabella (3.2).

Se la frequenza della tonica e f , la successione di frequenze sara determinata quindi

da

f,9

8f,

5

4f,

4

3f,

3

2f,

5

3f,

15

8f, 2f

Di fatto, le frequenze della scala diatonica di C (Do) sono calcolate utilizzando come

base A4 (La4) a 440 Hz, cio che fornisce per il C4 264 Hz.

Quindi nell’ottava di una scala maggiore cinque degli intervalli sono toni (due se-

mitoni), e due (il terzo e il settimo) sono semitoni: la successione degli intervalli che

SUPSI-DTI Corso di Fisica e Modellistica Prof. Andrea Danani

Page 59: Corso di Fisica 3 ONDE E ELETTROMAGNETISMO · funzionamento di specchi, prismi, lenti e dei sistemi ottici costruiti con essi. In generale, nell’attraversamento di una super cie

3.7. QUALCHE NOZIONE DI MUSICOLOGIA 59

si incontrano eseguendo una scala dipende dalla nota con cui si comincia (la tonica) e

i cinque tasti neri aggiuntivi (i diesis (]) o bemolli ([)) permettono i salti di un semi-

tono verso l’alto (]) o verso il basso ([) nelle scale diverse da quella di C in modo da

preservare la sequenza che definisce la scala.

Per le scale dette minori, si utilizzano le triadi che hanno un rapporto fra le

frequenze dato da 10:12:15. Queste sono date da:

A,C,E o La-Do-Mi

E,G,B o Mi-Sol-Si

D,F,A o Re-Fa-La

La costruzioni delle scale avviene come per le maggiori e le suddette triade danno luogo

a una scala con i rapporti fra le frequenze dati dalla tabella (3.3).

1 98

65

43

32

85

95 2

A B C D E F G A

98

1615

109

98

1615

98

109

Tabella 3.3: Rapporti fra le frequenze nelle note della scala diatonica minore rispetto

alla tonica A (sopra) e per note adiacenti (sotto)

3.7.3 I modi

Nella musica dell’antica Grecia, la scala poteva cominciare da qualsiasi nota della scala

diatonica e i semitoni capitavano in una posizione diversa a seconda della nota da cui

si partiva; queste scale erano chiamate modi.

E’ quindi possibile costruire sette modi senza inserire alcuna alterazione, semplice-

mente ordinando la sequenza da un’altra nota. Questi modi sono elencati nella tabella

3.4

Come visto in precedenza per le scale maggiori e minori, tutti questi modi hanno

la caratteristica di possedere un gruppo di note fra cui vi sono due toni, come c - d - e,

ed un altro con tre toni, quali f - g - a - b, separati ognuno da due semitoni, quali quelli

fra e e f e quello fra b e c. Un ordinamento di questo tipo, tipico della scala diatonica,

ha una certa importanza, perche ad esempio scale medioorientali con sette note non

hanno questa caratteristica.

I modi greci scomparirono dalla musica durante i primi secoli dell’era cristiana e

furono rimpiazzati dai modi ecclesiastici che ebbero il loro periodo di maggior fulgore

dall’ 800 al 1500. Questi modi erano alla base del canto Gregoriano. Essi vennero

SUPSI-DTI Corso di Fisica e Modellistica Prof. Andrea Danani

Page 60: Corso di Fisica 3 ONDE E ELETTROMAGNETISMO · funzionamento di specchi, prismi, lenti e dei sistemi ottici costruiti con essi. In generale, nell’attraversamento di una super cie

3.7. QUALCHE NOZIONE DI MUSICOLOGIA 60

Nome Nota Scala

iniziale

Ionio C c - d - e - f - g - a - b

Dorico E d - e - f - g - a - b - c

Frigio E e - f - g - a - b - c - d

Lidio F f - g - a - b - c - d - e

Missolidio G g - a - b - c - d - e - f

Eolio A a - b - c - d - e - f - g

Locrio B b - c - d - e - f - g - a

Tabella 3.4: Modi

impiegati anche in composizioni polifoniche come quelle di Palestrina. Anche se caddero

in disuso nel diciassettesimo secolo, qualcosa di questi modi sopravvive nella musica

popolare di alcuni paesi e qualche compositore li usa ancora. Generalmente pero nella

musica occidentale sono sopravvissuti solo la scala maggiore e la scala minore che si

adattano meglio alla nostra armonia.

3.7.4 La scala temperata

Le due tabelle (3.2) e (3.3) illustrano in modo indiretto le difficolta pratiche che si

incontrano utilizzando tali scale: ogni ottava richiede almeno una trentina di frequenze

diverse. Cio rende molto difficile l’accordatura di strumenti che abbiano le note fissate

per suonare in una data tonalita. Per ovviare a questa difficolta, e stata introdotta

la scala detta temperata. Questa scala rinuncia all’esattezza dei rapporti ideali e so-

stituisce ad essi una suddivisione dell’ottava in 12 intervalli in modo che il rapporto

fra due note adiacenti sia uguale per tutti gli intervalli. Questi 12 intervalli vengono

comunemente chiamati semitoni temperati. Dato che ogni semitono implica un fattore

q e che vi sono 12 intervalli, si dovra avere che q12 = 2. Questo implica che un semitono

ha un valore di 12√

2 = 1.059463. Questo sistema trae origine da una pratica empirica

diffusa nel XVII secolo per l’accordatura degli strumenti a pizzico e che fu teorizzata

dal musicista tedesco Andreas Werkmeister nel 1691. I due volumi del Clavicembalo

ben temperato di J.S. Bach, contenenti ciascuno 24 preludi e fughe in tutte le tonalita

della scala temperata costituiscono una esemplificazione monumentale delle possibilita

compositive di questo sistema. Per mettere in risalto la differenza con la scala naturale,

la seguente tabella riporta le frequenze delle sette note nei due casi, assumendo come

base 440 Hz per il La4.

Nel sistema temperato, diesis e bemolle vengono trattati in un modo piu semplice.

Per esempio, nell’intervallo di sesta minore (8 semitoni con rapporto di frequenza 8/5),

SUPSI-DTI Corso di Fisica e Modellistica Prof. Andrea Danani

Page 61: Corso di Fisica 3 ONDE E ELETTROMAGNETISMO · funzionamento di specchi, prismi, lenti e dei sistemi ottici costruiti con essi. In generale, nell’attraversamento di una super cie

3.7. QUALCHE NOZIONE DI MUSICOLOGIA 61

Scale musicali e frequenze

Scala temperata Scala naturale

Nota f(Hz) f/fC f(Hz) f/fCC/Do 261.63 1.000 264 1.000

D/Re 293.66 1.122 297 1.125

E/Mi 329.63 1.260 330 1.250

F/Fa 349.23 1.335 352 1.333

G/Sol 392.00 1.498 396 1.500

A/La 440.00 1.682 440 1.667

B/Si 493.88 1.888 495 1.875

Tabella 3.5: Confronto fra scala naturale e quella ben temperata

La[ dovrebbe avere un rapporto di frequenza pari a 1.6 per essere una terza maggiore

perfetta (5/4) dal Do superiore della scala. Per rendere l’intervallo Mi-Sol] una terza

maggiore naturale, il Sol] dovrebbe avere un rapporto di frequenza pari a (5/4)2 =

25/16 = 1.5625. Percio Sol] e La[ non coincidono. Nel sistema temperato sia il Sol]

che il La[ sono rappresentati dallo stesso tasto nero con un rapporto di frequenza uguale

pari a q8 = 1.587401. Come si vede, in questa scala, gli intervalli anche se leggermente

sbagliati, sono gli stessi in tutte le tonalita e quindi sono tutti ugualmente intonati (o

fuori tono).

Nella scala maggiore del sistema temperato, la successione dei toni (indicati con 2)

e dei semitoni (1) e (2,2,1,2,2,2,1), come risulta dalla tabella 3.2. Per fare un esempio,

costruiamo la scala maggiore di G, vale a dire la dominante della scala di C. Partendo

dal Sol (G) e riproducendo la sequenza precedente, otteniamo La (due semitoni Sol-

Sol ] e Sol ]-La),Si,Do,Re, Mi,Fa ],Sol. E’ necessario introdurre il Fa ] in quanto

l’intervallo Mi-Fa corrisponde solo a un semitono a cui va aggiunto il semitono Fa-Fa ]

per ottenere la sequenza giusta. L’ultimo semitono deriva dall’intervallo Fa ]-Sol.

Nella scala minore la successione degli intervalli e (2,1,2,2,1,2,2) (vedi tabella 3.3;

ci sono tre varianti della scala minore nelle quali gli ultimi tre intervalli possono essere

2,1,2 oppure 2,2,1 (melodica discendente che e il modo eolio e melodica ascendente) o

addirittura 1,3,1 (armonica). Nella scala di La minore ad esempio queste tre varianti

vengono ottenute introducendo il Fa ], il Sol ] , o entrambi al posto del Fa e del Sol

naturali.

Il sistema temperato soffre dell’approssimazione delle vere terze e quinte: ad esem-

pio l’intervallo di terza (tra Do e Mi) che vale 1.25 nella scala naturale diventa 1.26

in quella temperata, un intervallo facilmente percepibile da un orecchio allenato. Ma

questa deficienza e largamente compensata dalla facilita dell’uso delle stesse note in

tutte le scale, il che permette facili modulazioni - vale a dire il passaggio da una scala

ad un’altra - e trasposizioni - cioe quando un brano originariamente in una scale viene

suonata in un’altra. Da ultimo si noti che, anche se questi concetti e metodi possono

SUPSI-DTI Corso di Fisica e Modellistica Prof. Andrea Danani

Page 62: Corso di Fisica 3 ONDE E ELETTROMAGNETISMO · funzionamento di specchi, prismi, lenti e dei sistemi ottici costruiti con essi. In generale, nell’attraversamento di una super cie

3.7. QUALCHE NOZIONE DI MUSICOLOGIA 62

apparire difficili, in realta non sono che la formalizzazione di conoscenze intuitive note

a tutti, dato che ogni persona che canta sa trasporre naturalmente un po’ piu in alto

o in basso. Si dice anche che la scala ben temperata e in qualche modo sgradevole ai

musicisti dall’orecchio raffinato. Di fatto la maggior parte della gente, alcuni musici-

sti inclusi trovano difficile distinguere gli intervalli perfetti della scala naturale dagli

intervalli della scala temperata.

3.7.5 Caratteristiche degli intervalli musicali

Nella musica occidentale, soprattutto a partire dal ’700, e stata sviluppata in modo

molto marcato l’armonia, vale a dire l’arte di suonare molti suoni assieme. L’impor-

tanza dell’armonia ha pero comportato la perdita di alcune caratteristiche musicali

che sono state invece sviluppate da altre civilta . Ad esempio la musica indiana ha

mantenuto una larga varieta di modi mentre come abbiamo visto, la musica europea

ha ridotto tutto a soli due modi, quello maggiore e quello minore. La musica africana

ha sviluppato ritmi che variano durante lo svolgimento del brano e sovrapposizioni di

ritmi (poliritmo), mentre in occidente si e rimasti su ritmi con metri fissi a multipli di

2 e 3 (nei Balcani vengono usati anche metri a 5 e 7). Inoltre timbri e effetti speciali

sono quasi assenti per non disturbare l’effetto armonico.

Come gia visto in precedenza, vi sono diversi intervalli possibili nella scala e il nome

dell’intervallo indica la quantita di note fra le due note, compresi gli estremi. E’ mag-

giore o minore a seconda di quanti semitoni ci sono nell’intervallo. Essere maggiore o

minore, come vedremo, influisce molto sul senso dell’intervallo. La definizione che ne

viene fornita normalmente non aiuta piu di tanto a riconoscerli e distinguerli immedia-

tamente, ad orecchio per cosi dire. Il fatto e che ogni intervallo ha una caratteristica

emotiva o comunque peculiare, che lo rende unico e riconoscibile.

Ovviamente la dimostrazione sta nello stesso ascolto dell’intervallo per il quale ver-

ranno dati alcuni esempi di musiche famose che lo contengono, in modo da constatarne

la personalita specifica, come se lo si estraniasse dalle due note che lo compongono e

assumesse un proprio carattere. Ecco un breve elenco:

• Intervallo di 6a: Sesta maggiore e Sesta minore

e detto l’intervallo del cuore, del sentimento. Questo intervallo suscita una varia

gamma di emozioni nel senso piu letterario, classico della parola: come nostalgia,

innamoramento, gioia di stare assieme in compagnia, e anche lutto (se la sesta e

minore). Pensiamo alle note iniziali del tema del film Love story che rappresen-

tano un intervallo di 6a minore. Oppure il famoso spot della Coca-cola Vorrei

cantare insieme a voi..., che richiama alla gioia dell’amicizia, cosi come il richiamo

nostalgico non avvilente in Azzurro di P. Conte, le cui prime due note formano

proprio una sesta maggiore.

• Intervallo di 3a: Terza maggiore e Terza minore

SUPSI-DTI Corso di Fisica e Modellistica Prof. Andrea Danani

Page 63: Corso di Fisica 3 ONDE E ELETTROMAGNETISMO · funzionamento di specchi, prismi, lenti e dei sistemi ottici costruiti con essi. In generale, nell’attraversamento di una super cie

3.7. QUALCHE NOZIONE DI MUSICOLOGIA 63

e l’intervallo-melodico-base, quello primordiale e forma la prima melodia che sen-

tiamo. Non per niente le ninna-nanna sono formate da intervalli di terza; cosi

come le canzoni popolari. E’ l’intervallo che piu spesso fischiettiamo quando sia-

mo sovrappensiero, quello piu elementare! Pensiamo al famoso Giro-giro tondo o

Fra Martino Campanaro: sono intervalli di terza. Il pop e pieno di famosi cantati

con le terze (Ticket to ride e Hey Jude dei Beatles). La facilita d’intonazione gli

permette di essere usato anche in situazioni piu colte come un passaggio armoni-

co che permette di spostarsi senza perdere il senso della melodia (ad esempio il

galoppo nella Cavalcata delle Valchirie di Wagner).

• Intervallo di 8a :

e l’intervallo che suggerisce la potenza, che da forza, un’esclamazione ineluttabile,

di cui non si puo dubitare come nell’inizio della Nona Sinfonia di Bruckner. Inizia

con un intervallo di 8a anche Singing in the rain, conferendo subito una grossa

spinta alla composizione.

• Intervallo di 2a:

qui si tratta di un effetto derivante dalla struttura delle scale. E’ un intervallo

che funge da breve spostamento o per arrivare alla melodia dell’intervallo di

3a o per lasciare in sospeso la melodia prima che torni alla nota iniziale. E’

comunque un passo, che sospende in attesa che succeda qualcosa da definire

(l’inizio della beatlesiana Yesterday). Puo essere usato apposta per bombardare

l’orecchio in attesa della soluzione, come in Centro di gravita permanente di

Battiato. In particolare va rilevato che la seconda minore ha un uso ulteriore:

quello di esprimere dolore, lamento o comunque destabilizzazione; soprattutto se

si sposta l’intero accordo (avanti o indietro di un semitono)

• Intervallo di 7a:

e chiaramente un intervallo che suona esagerato, fuori misura, teso. Si sente

che la melodia creata dall’intervallo e sbilanciata e ha bisogno di un’immediata

soluzione: in genere si torna indietro alla tonica (la nota base delle melodie,

quella che da il senso di riposo). Da ascoltare ad esempio Give peace a chance di

Lennon, tra is e give nel ritornello ...all we are saying is give peace a chance....

Discorso a parte e piu complesso per gli intervalli di Quinta e di Quarta(es. Do-Sol,

Do-Fa ): sono gli intervalli strutturali, su di loro poggiano le melodie per concludersi o

per svilupparsi. A seconda del loro uso aprono o chiudono o semplicemente permettono

la continuazione del suonare. Bisogna sempre usare il buon senso e capire che tali

posizioni e significati possono cambiare e assumere sfumature piu variegate a seconda

del contesto della specifica composizione o del ritmo impresso alla melodia. Il senso

generale qui esposto rimane, tuttavia, abbastanza valido e universale.

SUPSI-DTI Corso di Fisica e Modellistica Prof. Andrea Danani

Page 64: Corso di Fisica 3 ONDE E ELETTROMAGNETISMO · funzionamento di specchi, prismi, lenti e dei sistemi ottici costruiti con essi. In generale, nell’attraversamento di una super cie

3.7. QUALCHE NOZIONE DI MUSICOLOGIA 64

SUPSI-DTI Corso di Fisica e Modellistica Prof. Andrea Danani

Page 65: Corso di Fisica 3 ONDE E ELETTROMAGNETISMO · funzionamento di specchi, prismi, lenti e dei sistemi ottici costruiti con essi. In generale, nell’attraversamento di una super cie

Capitolo 4

Fenomeni elettrici

4.1 Carica elettrica e legge di Coulomb

4.1.1 Proprieta delle cariche elettriche

L’esistenza di forze e di cariche di natura elettrica fu verificata attraverso l’ osservazione

che alcuni materiali strofinati sulla lana erano in grado di attrarre piccoli pezzi di carta.

In tali circostanza si dice che tali corpi risultano elettrizzati o elettricamente carichi. Nel

1734 il botanico francese Charles DuFay rivelo l’esistenza di due differenti tipi di carica

elettrica alla quale fu attribuito da Benjamin Franklin nel 1747 la denominazione di

positiva o negativa. Tale caratteristica viene evidenziata, ad esempio, dal fatto che una

bacchetta di bachelite che sia stata strofinata con un panno di lana e sospesa ad un filo

metallico viene attratta da una barretta di vetro strofinata con un panno di seta mentre

viene respinta da una bacchetta di bachelite elettrizzata. Il processo dell’elettrizzazione

per strofinio mette, per altro, in luce la manifestazione di un’importante principio. In

tale circostanza non viene a crearsi della carica ma questa viene trasferita da un corpo

ad un’altro; cosi, se un corpo acquista una carica positiva, l’altro acquista la medesima

quantita di carica negativa. La conoscenza della struttura dell’atomo rivela che nei

processi di elettrizzazione per strofinio alcuni elettroni della bacchetta sono strappati

dall’azione abrasiva e vengono trasferiti al panno. Cio porta a concludere che la carica

totale si conserva in ogni processo. Nel 1909 Robert Millikan verifico sperimentalmente

che la carica elettrica si presenta sempre in multipli interi di un’unita fondamentale

di carica e, ovvero la carica che si osserva risulta quantizzata esistendo sempre in

quantita discrete. Pertanto la carica q di un corpo si puo sempre esprimere come

± Ne , dove N e un numero intero. In particolare un elettrone ha carica −e mentre

un protone ha carica +e ; un atomo neutro contiene lo stesso numero di elettroni e

di protoni. Nel 1785 Charles Augustin de Coloumb, facendo uso di una bilancia a

torsione verifico che la forza elettrica tra due corpi carichi puntiformi e proporzionale

all’inverso del quadrato della reciproca distanza. Alla luce di queste considerazioni

possiamo riassumere brevemente le proprieta delle cariche elettriche stazionarie:

65

Page 66: Corso di Fisica 3 ONDE E ELETTROMAGNETISMO · funzionamento di specchi, prismi, lenti e dei sistemi ottici costruiti con essi. In generale, nell’attraversamento di una super cie

4.1. CARICA ELETTRICA E LEGGE DI COULOMB 66

• Ci sono due tipi di cariche elettriche, con la caratteristica che cariche diverse si

attraggono mentre cariche uguali si respingono;

• La carica si conserva;

• La carica e quantizzata;

• La forza tra cariche puntiformi e inversamente proporzionale al quadrato della

mutua distanza.

4.1.2 Isolanti e conduttori

Originariamente si riteneva che i metalli non potessero essere caricati, ad esempio, per

strofinio; tuttavia una bacchetta metallica sostenuta da un materiale come il vetro, puo

caricarsi. Cio perche in tali materiali la carica si distribuisce rapidamente in tutto il

corpo e l’interposizione del vetro tra il metallo ed il sostegno, rappresentato ad esempio

dalla mano dell’operatore, impedisce il flusso della carica verso la terra.

Cosi vetro e bachelite sono detti isolanti: la carica in tali materiali viene a loca-

lizzarsi in una regione del corpo e non si sposta; viceversa, in genere, i metalli sono

conduttori: la carica tende a ridistribuirsi rapidamente nel corpo. Collegando attraver-

so un filo conduttore un materiale conduttore a terra (messa a terra) si agevola il flusso

delle cariche verso tale corpo che agisce, quindi, come una sorta di serbatoio infinito

di carica. Un procedimento alternativo all’elettrizzazione per strofinio prende il nome

di elettrizzazione per induzione. Avvicinando un corpo carico, ad esempio negativa-

mente, ad un conduttore neutro, la regione piu prossima al corpo carico si carica di

segno opposto mentre quella piu lontana si carica dello stesso segno (di fatto gli elet-

troni del corpo neutro si spostano lasciando scoperta della carica positiva). Se il corpo,

anziche essere isolato e connesso a massa, alcuni elettroni fluiscono verso massa, per

cui, interrompendo la connessione il corpo resta carico positivamente. Allontanando

successivamente il corpo carico la carica della sfera si distribuisce uniformemente nel

corpo originariamente neutro per effetto della mutua repulsione delle cariche uguali.

Infine un isolante puo caricarsi per polarizzazione. Nelle molecole neutre i baricentri

delle cariche positive e negative in genere coincidono; tuttavia in presenza di un cor-

po carico i baricentri si spostano caricando in modo non uniforme la molecola. Cio

determina la generazione di una carica indotta sulla superficie dell’isolante.

4.1.3 La legge di Coulomb

La legge che esprime l’intensita della forza elettrica che si esercita fra due particelle

puntiformi cariche, rispettivamente di carica q1 e q2 , a riposo, poste alla mutua distanza

r e data dalla relazione:

F = k| q1 || q2 |

r2. (4.1)

SUPSI-DTI Corso di Fisica e Modellistica Prof. Andrea Danani

Page 67: Corso di Fisica 3 ONDE E ELETTROMAGNETISMO · funzionamento di specchi, prismi, lenti e dei sistemi ottici costruiti con essi. In generale, nell’attraversamento di una super cie

4.1. CARICA ELETTRICA E LEGGE DI COULOMB 67

Tale formula esprime la legge di Coulomb. L’unita di misura della carica e il coulomb

(C). La costante k che compare nell’espressione della legge di Coulomb vale:

k = 8.98× 109 Nm2/C2

e per definizione risulta:

k =1

4πε0

dove

ε0 ≈ 8.85× 10−12C2/Nm2.

e detta costante dielettrica del vuoto. La carica libera piu piccola e quella dell’elettrone

e risulta:

| e | ≈ 1.60× 1019 C

cosi 1C e la carica di circa 6.3× 1018 elettroni.

Vettorialmente, se r rappresenta il versore diretto da q1 a q2 , allora la forza elettrica

esercitata su q2 per effetto di q1 e:

~F21 =1

4πε0

q1q2

r2r , (4.2)

inoltre dalla legge di azione-reazione segue che la forza agente su q1 da q2 e data da~F12 = −~F21 (vedi Fig.4.1).

Figura 4.1: Forza di Coulomb

Se ci sono piu cariche, la forza tra una coppie di cariche puo essere ricavata dalla

legge di Coloumb e la risultante e quindi la somma vettoriale delle forze dovute alle

singole cariche; cioe le forze elettriche obbediscono al principio di sovrapposizione.

SUPSI-DTI Corso di Fisica e Modellistica Prof. Andrea Danani

Page 68: Corso di Fisica 3 ONDE E ELETTROMAGNETISMO · funzionamento di specchi, prismi, lenti e dei sistemi ottici costruiti con essi. In generale, nell’attraversamento di una super cie

4.2. CAMPO E POTENZIALE ELETTROSTATICO 68

4.2 Campo e potenziale elettrostatico

4.2.1 Campo elettrico

Si definisce vettore campo elettrico ~E il rapporto tra la forza ~F che agisce su una carica

di prova positiva q0 ed il valore di tale carica, vale a dire:

~E =~F

q0

, (4.3)

e tale grandezza si misura in N/C.

Il concetto di campo consente di interpretare diversamente l’azione che si esplica tra

due corpi carichi: e possibile rivedere tale interazione come l’interazione tra una carica

ed il campo prodotto dall’altra carica, senza dover far ricorso all’azione a distanza

(interazione diretta e istantanea) suggerita dalla legge di Coloumb. I mutamenti di

posizione della carica che si assume dia origine al campo si propagano nello spazio

alla velocita della luce in accordo con la teoria della relativita. Assegnata una carica

puntiforme q posta a distanza r dalla carica di prova q0, secondo la legge di Coloumb

(4.2), il campo elettrico prodotto dalla carica puntiforme q e dato da

~E =~F

q0

=1

4πε0

q

r2r , (4.4)

Nella Fig. (4.2) e mostrato il campo elettrico prodotto in corrispondenza di una carica

di prova da una carica puntiforme positiva, in alto, e negativa, in basso.

Figura 4.2: Campo elettrico con +q e −q

Come conseguenza del principio di sovrapposizione, se ~E1, ~E2, . . . , ~EN sono i campi

prodotti da N cariche, allora il campo complessivo e:

~E = ~E1 + ~E2 + · · ·+ ~EN (4.5)

SUPSI-DTI Corso di Fisica e Modellistica Prof. Andrea Danani

Page 69: Corso di Fisica 3 ONDE E ELETTROMAGNETISMO · funzionamento di specchi, prismi, lenti e dei sistemi ottici costruiti con essi. In generale, nell’attraversamento di una super cie

4.2. CAMPO E POTENZIALE ELETTROSTATICO 69

In particolare, per un sistema di N cariche puntiformi q1, q2, . . . , qN poste rispettiva-

mente alle distanze r1, r2, . . . , rN dal punto in cui e stata posta la carica di prova, si

ha:

~E =1

4πε0

N∑i=1

qir2i

ri , (4.6)

dove come prima i vettori ri sono i versori fra la carica qi e la carica di prova.

4.2.2 Linee di forza del campo elettrico

Le linee di forza consentono una immediata visualizzazione della distribuzione spaziale

del campo elettrico. Le loro caratteristiche sono:

• Il vettore campo elettrico e tangente

alle linee di forza in ogni punto

• Il numero di linee di forza per unita di

superficie che attraversano una superfi-

cie ad esse perpendicolare e proporzio-

nale all’intensita del campo elettrico in

corrispondenza della superficie.

Nell’esempio in figura, siccome la densita delle linee che attraversano la superficie

A e superiore a quella delle linee che attraversano la superficie B, il campo elettrico in

A e maggiore del campo in B.

Le regole per disegnare le linee di forza per una distribuzione di carica sono:

• le linee di forza devono avere origine dalle cariche positive e terminare sulle cariche

negative o all’infinito qualora il sistema abbia un eccesso di carica;

• il numero di linee di forza che entrano o escono da una carica e proporzionale alla

carica;

• due linee di forza non si possono incrociare.

Figura 4.3: Linee di forza del campo elettrico prodotto da due cariche puntiformi di

segno opposto (sinistra) e uguale (destra)

SUPSI-DTI Corso di Fisica e Modellistica Prof. Andrea Danani

Page 70: Corso di Fisica 3 ONDE E ELETTROMAGNETISMO · funzionamento di specchi, prismi, lenti e dei sistemi ottici costruiti con essi. In generale, nell’attraversamento di una super cie

4.2. CAMPO E POTENZIALE ELETTROSTATICO 70

Il metodo di rappresentazione del campo elettrico attraverso le linee di forza presen-

ta tuttavia alcune limitazioni. Innanzitutto la sua efficacia e circoscritta alla descrizione

di campi statici essendo piuttosto complessa la rappresentazione dei campi generati da

cariche in movimento; inoltre con questo metodo e impossibile applicare il principio di

sovrapposizione.

4.2.3 Il dipolo elettrico

Il sistema costituito da due cariche uguali ma

opposte q poste alla mutua distanza d pren-

de il nome di dipolo elettrico. Calcoliamo il

campo elettrico in un punto situato lungo la

linea mediana perpendicolare alla retta con-

giungente le cariche e posto alla distanza x

dalla congiungente stessa (si veda la figura

a fianco). Indicando con ~E+ e ~E− i campi

prodotti da ciascuna carica, per il principio

di sovrapposizione si ha:

~E = ~E+ + ~E− ,

dove

E+ = E− =1

4πε0

q

r2=

1

4πε0

q

x2 + d2.

Dato che (E−)x = −(E+)x, il campo sara diretto lungo l’asse y e varra:

E = (E+)y + (E−)y = 2E+ cosϑ , cosϑ =d√

x2 + d2

da cui si ottiene che

E = 21

4πε0

q

x2 + d2

d√x2 + d2

=1

4πε0

p

(x2 + d2)3/2(4.7)

dove p = q (2d) e detto momento di dipolo elettrico. In molte applicazioni risulta utile

stabilire il campo elettrico a grande distanza dal dipolo, ossia per x � d. In questo

caso, troncando l’equazione (4.7) al primo termine dello sviluppo in serie, si ottiene:

E =1

4πε0

p

x3

[1 +

(d

x

)2]−3/2

=1

4πε0

p

x3

[1− 3

2

(d

x

)2

+ . . .

]≈ 1

4πε0

p

x3

Analogamente, si puo provare che per un punto posto lungo l’asse y, a grande distanza

r dal dipolo, si ha:

E ≈ 1

4πε0

p

y3.

I due risultati appena riportati costituiscono un’indicazione di una caratteristica ge-

nerale del dipolo; e infatti possibile provare che a distanza r dal dipolo, con r � d, il

campo elettrico varia come 1/r3.

SUPSI-DTI Corso di Fisica e Modellistica Prof. Andrea Danani

Page 71: Corso di Fisica 3 ONDE E ELETTROMAGNETISMO · funzionamento di specchi, prismi, lenti e dei sistemi ottici costruiti con essi. In generale, nell’attraversamento di una super cie

4.2. CAMPO E POTENZIALE ELETTROSTATICO 71

4.2.4 Distribuzioni continue di cariche

Qualora la separazione fra le singole cariche di un certo insieme e molto piccola rispetto

alla distanza dal punto in cui si vuole calcolare il campo, e possibile considerare tale

insieme come una distribuzione continua di carica. Consideriamo pertanto una certa

distribuzione di carica e valutiamo il campo elettrico in un punto P . Il contributo al

campo di un elemento ∆q di carica e:

∆ ~E =1

4πε0

∆q

r2r ,

dove r e la distanza dell’elemento ∆q da P (vedi Fig.4.4). Chiamiamo con ∆qi l’i-esimo

elemento di carica che costituisce la distribuzione di carica. Se la separazione fra tali

elementi e piccola rispetto alla distanza dal punto P , la distribuzione puo ritenersi

continua, cosi, nel limite ∆qi → 0 si ha:

∆ ~E =1

4πε0

∑i

∆qir2i

ri =1

4πε0

∫Q

dq

r2r, (4.8)

dove l’integrazione e estesa a tutta la carica Q che costituisce la distribuzione.

Figura 4.4: Campo elettrico di un elemento di carica ∆q

Allo scopo di eseguire tale calcolo si rende opportuno introdurre il concetto di

densita di carica. In particolare, se la carica e distribuita in un volume si definisce la

densita di carica volumetrica ρ come

ρ =dq

dV. (4.9)

Da notare che ρ e una funzione della posizione, vale a dire ρ = ρ(~r) dove il vettore ~r

spazzola tutta la carica, e si misura in C/m3. In modo analogo si definiscono le densita

di carica superficiale σ = dq/dS e la densita di carica lineare λ = dq/dl. Naturalmente,

qualora una carica q e uniformemente distribuita in un volume V o su di una superficie

S o lungo una linea l allora si ha, rispettivamente, ρ = q/V , σ = q/S e λ = q/l.

ESEMPIO 4.1. Campo elettrico generato da un filo lungo e sottile che porta una densita

lineare λ di carica.

SUPSI-DTI Corso di Fisica e Modellistica Prof. Andrea Danani

Page 72: Corso di Fisica 3 ONDE E ELETTROMAGNETISMO · funzionamento di specchi, prismi, lenti e dei sistemi ottici costruiti con essi. In generale, nell’attraversamento di una super cie

4.3. LA LEGGE DI GAUSS 72

Soluzione: Suddividiamo il filo in piccoli tratti di lunghezza dx, portanti una carica dq =

λdx. L’intensita del campo elettrico prodotto dall’elemento dx in P a una distanza d dal filo

e

dE′ =1

4πε0

λdx

r2

ed il campo e diretto come indicato in Fig.(4.5). Per la simmetria del problema, le componenti

parallele al filo si annullano e rimangono solo le componenti radiali date da dE′ cos θ.

Figura 4.5: Campo elettrico di un filo carico infinito

Il campo elettrico risultante sara percio dato da:

E =

∫dE =

∫dE′ cos θ =

λ

4πε0

∫dx

r2cos θ .

Dalla figura, risulta r = d/ cos θ e x = d tan θ, per cui dx = (d/ cos2 θ) dθ. Facendo le debite

sostituzioni, integrando su meta filo da θ = 0 a θ = π/2 (se poniamo per semplicita L→∞)

e moltiplicando per un fattore due, si ottiene:

E =2λ

4πε0d

∫ π/2

0cos θ dθ =

λ

2πε0d.

Pertanto il campo elettrico varia come d−1.

4.3 La legge di Gauss

4.3.1 Introduzione

La legge di Gauss e una riformulazione della legge di Coulomb che risulta particolar-

mente utile quando il sistema in esame presenta certe simmetrie. Di fondamentale

importanza nella legge di Gauss e un’ipotetica superficie chiusa chiamata superficie

gaussiana. Essa puo avere qualsiasi forma ma verra scelta con una simmetria simile

a quella del problema: si trattera spesso di una sfera, un cilindro, o qualsiasi altra

forma simmetrica. Deve comunque essere sempre una superficie chiusa, in modo che si

SUPSI-DTI Corso di Fisica e Modellistica Prof. Andrea Danani

Page 73: Corso di Fisica 3 ONDE E ELETTROMAGNETISMO · funzionamento di specchi, prismi, lenti e dei sistemi ottici costruiti con essi. In generale, nell’attraversamento di una super cie

4.3. LA LEGGE DI GAUSS 73

possa fare una distinzione tra i punti all’interno e quelli all’esterno della superficie. La

legge di Gauss mette poi in relazione i campi sulla superficie gaussiana con le cariche

racchiuse all’interno.

4.3.2 Flusso di un campo vettoriale

Consideriamo un campo vettoriale ~v e supponiamo

che le linee di forza corrispondenti siano tutte pa-

rallele tra loro. Consideriamo una superficie di area

S disposta perpendicolarmente alle linee di forza (si

veda la figura a fianco). Poiche il numero di linee

di forza per unita di area di un vettore e proporzio-

nale al modulo del vettore, una misura del numero

di linee di forza passanti attraverso la superficie e

proporzionale al prodotto vS . Questa grandezza

prende il nome di flusso φ del vettore ~v attraverso la

superficie S: φ = vS

Qualora la superficie forma un angolo θ con le linee

di forza di ~v risultera:

φ = vS cos θ , (4.10)

essendo il numero di linee che attraversa S pari al

numero di linee che attraversa l’area proiettata S ′ ,

perpendicolare al campo (si veda la figura).

Se si definisce un versore normale n alla superficie S, si puo definire il flusso φ come:

φ = ~v · nS = ~v · ~S (4.11)

dove il vettore superficie e definito da ~S = nSNel caso generale il vettore ~v puo variare in corri-

spondenza dei punti della superficie S attraverso la

quale si vuole calcolare il flusso; cosi per poter appli-

care la precedente definizione occorre suddividere ta-

le superficie in elementi infinitesimi ds in corrispon-

denza dei quali la variazione del vettore ~v puo essere

considerata trascurabile, allora il flusso elementare

di ~v attraverso ds sara:

dφ = ~v · d~S (4.12)

SUPSI-DTI Corso di Fisica e Modellistica Prof. Andrea Danani

Page 74: Corso di Fisica 3 ONDE E ELETTROMAGNETISMO · funzionamento di specchi, prismi, lenti e dei sistemi ottici costruiti con essi. In generale, nell’attraversamento di una super cie

4.3. LA LEGGE DI GAUSS 74

Pertanto la misura del numero di linee di forza del campo ~v che attraversano tale

superficie e:

φ =

∫S

~v · d~S (4.13)

Poiche in generale la superficie puo anche essere

chiusa (si veda la figura), occorre stabilire una con-

venzione circa il verso di n. In questo contesto tale

versore e scelto uscente dalle superfici chiuse. Con

questa convenzione il prodotto ~v ·n sara positivo lad-

dove il campo e uscente dalla superficie considerata

e sara negativo dove il campo e entrante.

4.3.3 La legge di Gauss

La legge di Gauss mette in relazione il flusso netto φ del campo elettrico attraverso

una superficie chiusa con la carica netta Qint che e racchiusa all’interno della superficie.

Vale a dire:

ε0φ = Qint (4.14)

che con la definizione di flusso derivante dall’equazione (4.13) applicata al campo

elettrico ~E diventa

φ =

∮S

~E · d~S . (4.15)

Il cerchietto sul segno di integrale indica che l’intera superficie su cui viene calcolato

l’integrale e una superficie chiusa.

Se la carica e esterna alla superficie chiusa (si veda la figura) il numero di linee di

forza entranti e pari a quello delle linee uscenti, cosi il flusso totale del campo elettrico

che attraversa una superficie chiusa che non circonda alcuna carica e nullo. Per questo

motivo, nell’equazione (4.14) si fa riferimento solamente alla carica interna Qint.

Le equazioni (4.14) e (4.15) valgono solo per cariche nel vuoto o in aria. Per

includere il caso di mezzi materiali, quali olio, mica, vetro, ecc, bisogna apportare

alcune modifiche alle equazioni.

SUPSI-DTI Corso di Fisica e Modellistica Prof. Andrea Danani

Page 75: Corso di Fisica 3 ONDE E ELETTROMAGNETISMO · funzionamento di specchi, prismi, lenti e dei sistemi ottici costruiti con essi. In generale, nell’attraversamento di una super cie

4.3. LA LEGGE DI GAUSS 75

Vediamo ora di dedurre la legge di Coulomb da quel-

la di Gauss. A questo proposito consideriamo una

carica positiva puntiforme q posta al centro di una

sfera gaussiana di raggio r (vedi figura a fianco). Per

ragioni di simmetria, il campo elettrico ~E e radiale,

quindi perpendicolare alla superficie, e si dirige dal-

l’interno verso l’esterno. L’angolo fra ~E e d~S e nullo,

quindi la legge di Gauss si puo scrivere in questo caso

come

ε0

∮S

~E · d~S = ε0

∮S

E dS = q (4.16)

Ma dato che il campo elettrico e costante su tutta la sfera, puo essere portato fuori

dall’integrale, quindi

ε0E

∮S

dS = q . (4.17)

Nell’integrale non rimane che il contributo dei dS che sommati danno semplicemente

la superficie della sfera, vale a dire 4πr2, percio

ε0E(4πr2) = q (4.18)

ossia

E =1

4πε0

q

r2(4.19)

che corrisponde proprio alla legge di Coulomb.

ESEMPIO 4.2. Consideriamo un filo di lunghezza infinita lungo il quale e uniformemente

distribuita una carica con densita lineare λ. Si desidera conoscere il valore del campo elettrico

in tutto lo spazio.

Soluzione: La simmetria della distribuzione di carica suggerisce che il campo elettrico deve

essere perpendicolare al filo carico e uscente. Consideriamo una superficie cilindrica S di

raggio r e lunghezza l coassiale col filo (nella figura, in alto; in basso la superficie e mostrata

in sezione); il flusso attraverso le superfici di base e nullo essendo il campo elettrico parallelo

a tali superfici, quindi:

φ( ~E) =

∮SE dS = E

∮SdS = 2πrlE .

D’altra parte per la legge di Gauss risulta che:

φ( ~E) = 2πrlE = q/ε0 = λl/ε0 ,

pertanto

E =1

2πε0

λ

r.

SUPSI-DTI Corso di Fisica e Modellistica Prof. Andrea Danani

Page 76: Corso di Fisica 3 ONDE E ELETTROMAGNETISMO · funzionamento di specchi, prismi, lenti e dei sistemi ottici costruiti con essi. In generale, nell’attraversamento di una super cie

4.4. CONDUTTORI IN EQUILIBRIO ELETTROSTATICO 76

Si osservi che se il filo non e infinito viene a cadere la simmetria e diventa inutile l’applica-

zione della legge di Gauss per la determinazione del campo elettrico; tuttavia questo risultato

resta valido per un filo di lunghezza finita L nel limite r � L per punti sufficientemente

distanti dalle estremita del filo.

4.4 Conduttori in equilibrio elettrostatico

Dal punto di vista microscopico, un buon conduttore elettrico puo essere generalmente

rappresentato come un reticolo atomico immerso in un gas di elettroni liberi di muoversi

all’interno del materiale. In assenza di un moto netto degli elettroni in una particolare

direzione, il conduttore e detto in equilibrio elettrostatico. In tale circostanza valgono

le seguenti proprieta:

• Il campo elettrico all’interno del conduttore e ovunque nullo;

• Un qualunque eccesso di carica su conduttore deve localizzarsi superficialmente.

• All’esterno del conduttore, in prossimita della superficie, il campo elettrico e

perpendicolare alla superficie ed ha intensita pari a σ/ε0, dove σ e la densita

superficiale di carica.

• Su un conduttore di forma irregolare la carica tende ad accumularsi nei punti in

cui la curvatura della superficie e maggiore, ovvero sulle punte

La prima proprieta puo essere compresa considerando una lastra conduttrice im-

mersa in un campo elettrico. All’applicazione del campo, gli elettroni si muovono verso

sinistra causando un accumulo di carica negativa a sinistra e positiva a destra. Queste

cariche creano un campo elettrico opposto al campo esterno; la densita superficiale

di carica cresce fino a che l’intensita di questo campo non uguagli quella del cam-

po esterno, dando luogo ad un campo nullo all’interno del conduttore; i tempi tipici

per raggiungere tale condizione di equilibrio sono dell’ordine di 10−16 sec per un buon

conduttore.

Consideriamo un conduttore in equilibrio elettrostati-

co; all’interno del conduttore consideriamo una super-

ficie chiusa S prossima quanto si vuole alla superficie

del conduttore (si veda la figura a fianco). Poiche

all’interno del conduttore il campo elettrico e nullo,

dalla legge di Gauss segue che all’interno della super-

ficie S e quindi del conduttore la carica netta e nulla.

Pertanto se il conduttore e carico, tale carica deve

situarsi sulla superficie.

SUPSI-DTI Corso di Fisica e Modellistica Prof. Andrea Danani

Page 77: Corso di Fisica 3 ONDE E ELETTROMAGNETISMO · funzionamento di specchi, prismi, lenti e dei sistemi ottici costruiti con essi. In generale, nell’attraversamento di una super cie

4.4. CONDUTTORI IN EQUILIBRIO ELETTROSTATICO 77

Consideriamo ora un conduttore carico all’equili-

brio e facciamo riferimento ad una superficie S a

forma di cilindro con le superfici di base A suffi-

cientemente piccole da potersi ritenere localmente

parallele alla superficie del conduttore e con par-

te del cilindro contenuta nel conduttore (vedi figu-

ra a sinistra). Attraverso la parte interna il flusso

del campo elettrico e nullo essendo nullo il campo

elettrico internamente al conduttore.

Inoltre il campo e normale alla superficie perche qualora vi fosse una componente tan-

genziale determinerebbe un moto delle cariche e quindi una condizione di non equilibrio.

Percio e nullo il flusso anche attraverso la superficie laterale del cilindro. Cosı il flusso

attraverso la superficie del cilindro e EnA essendo En il campo elettrico in prossimita

della superficie esterna del conduttore. Applicando la legge di Gauss alla superficie del

cilindro si ha quindi: ∫S

~E · d~S =σA

ε0

=q

ε0

,

dove σ e la densita locale di carica superficiale. Ne segue che, siccome En e pari a ~E · n,

dove n e il versore normale alla superficie del conduttore, allora:

~E =σ

ε0

n ;

tale espressione prende il nome di Teorema di Coloumb. L’ultima proprieta elencata

dei conduttori in equilibrio sara provata nel paragrafo (4.5.5).

SUPSI-DTI Corso di Fisica e Modellistica Prof. Andrea Danani

Page 78: Corso di Fisica 3 ONDE E ELETTROMAGNETISMO · funzionamento di specchi, prismi, lenti e dei sistemi ottici costruiti con essi. In generale, nell’attraversamento di una super cie

4.5. IL POTENZIALE ELETTRICO 78

4.5 Il potenziale elettrico

4.5.1 Definizione

Abbiamo gia visto che le forze di tipo centrale, che dipendono cioe solo dalla sola

distanza da un centro, sono forze conservative; quindi anche la forza espressa dalla

legge di Coulomb appartiene a questa categoria. Se una carica q0 e immersa in un

campo ~E, la forza ~F a cui e soggetta vale q0~E. Il lavoro fatto da questa forza in

corrispondenza di uno spostamento infinitesimo d~l della carica vale:

dL = ~F · d~l = q0~E · d~l (4.20)

Per definizione, il lavoro fatto da una forza conservativa e pari alla variazione di energia

potenziale dU cambiata di segno:

dU = −dL = −q0~E · d~l . (4.21)

In corrispondenza di uno spostamento finito di q0 dal punto A al punto B, la variazione

di energia potenziale e data da:

∆U = UB − UA = −q0

∫ B

A

~E · d~l , (4.22)

dove l’integrale non dipende dal cammino scelto essendo il campo ~E conservativo. La

differenza di potenziale tra i punti A e B e definita come la variazione dell’energia

potenziale per unita di carica, ovvero:

∆V = VB − VA =UB − UA

q0

= −∫ B

A

~E · d~l . (4.23)

In generale si usa assumere che la funzione potenziale elettrostatica si annulla all’infi-

nito; allora, ponendo V (∞) = 0, il potenziale in corrispondenza di un generico punto

P vale:

VP = −∫ P

~E · d~l , (4.24)

espressione che puo essere riguardata come il lavoro necessario per trasportare una

carica unitaria dall’infinito al punto P.

L’unita di misura del potenziale e il volt (V) e risulta 1V = 1J/1C, cosi 1 V

rappresenta il lavoro che deve essere fatto per far superare ad una carica di 1C una

differenza di potenziale di 1V . L’introduzione del volt consente inoltre di riscrivere

l’unita di misura del campo elettrico in V/m che rappresenta l’unita tradizionalmente

piu usata per questa grandezza. In fisica atomica e nucleare e d’uso comune per la

misura dell’energia l’elettronvolt (eV ), definito come l’energia che un elettrone (o un

protone) acquista quando viene accelerato mediante una differenza di potenziale di 1V .

Siccome 1V = 1J/1C e la carica dell’elettrone (protone) e di 1.6× 10−19 C, si ha che

1eV = 1.6× 10−19 C · V = 1.6× 10−19 J

SUPSI-DTI Corso di Fisica e Modellistica Prof. Andrea Danani

Page 79: Corso di Fisica 3 ONDE E ELETTROMAGNETISMO · funzionamento di specchi, prismi, lenti e dei sistemi ottici costruiti con essi. In generale, nell’attraversamento di una super cie

4.5. IL POTENZIALE ELETTRICO 79

4.5.2 Cariche puntiformi

Calcoliamo la differenza di potenziale tra i punti A e

B (vedi figura a fianco):

VB − VA = −∫ B

A

~E · d~l

dove~E =

1

4πε0

q

r2r .

Tenendo conto che r · d~l = cosθdl = dr, si ottiene che:

VB − VA = − q

4πε0

∫ rB

rA

1

r2dr =

q

4πε0

[1

r

]rBrA

=q

4πε0

(1

rB− 1

rA

). (4.25)

Assumendo che il potenziale sia nullo per rA → ∞, il potenziale dovuto a una carica

puntiforme e dato da:

V (r) =1

4πε0

q

r. (4.26)

Il potenziale V possiede quindi il segno della carica q.

Poiche V e uniforme su una superficie sferica di rag-

gio r (cioe ra = rB nell’espressione 4.25), concludiamo

che le superfici equipotenziali per una carica punti-

forme sono delle sfere concentriche alla carica stessa

e tali superfici risultano perpendicolari alla direzione

delle linee di campo. Nella figura a fianco, e mostrata

la sezione (in tratteggio) delle superfici equipotenziali

per una carica puntiforme.

Come conseguenza del principio di sovrapposizione, il potenziale in un certo punto,

dovuto a piu cariche puntiformi e pari alla somma dei potenziali di ciascuna carica

calcolati in tale punto:

V =1

4πε0

∑i

qiri

(4.27)

ponendo con ri la distanza fra qi e il punto sotto esame, sempre con l’ipotesi che il

potenziale sia nullo all’infinito.

Si definisce anche l’energia potenziale elettrica di un sistema di cariche puntiformi.

Questa energia e uguale al lavoro che si deve compiere dall’esterno per portare il sistema

nella configurazione indicata, spostando le cariche dall’infinito alla loro posizione. Per

due cariche q1 e q2 distanti r12, e facile dimostrare che l’energia potenziale U della

coppia e

U =1

4πε0

q1q2

r12

.

SUPSI-DTI Corso di Fisica e Modellistica Prof. Andrea Danani

Page 80: Corso di Fisica 3 ONDE E ELETTROMAGNETISMO · funzionamento di specchi, prismi, lenti e dei sistemi ottici costruiti con essi. In generale, nell’attraversamento di una super cie

4.5. IL POTENZIALE ELETTRICO 80

4.5.3 Potenziale dovuto a una distribuzione continua di carica

Quando una distribuzione di carica e continua, la sommatoria dell’equazione (4.27)

non e piu applicabile. Per trovare il potenziale V in un punto P , si deve scegliere un

elemento infinitesimo di carica dq e determinare il potenziale dV nel punto P dovuto

a dq, vale a dire:

dV =1

4πε0

dq

r.

Poi si deve integrare sull’intera distribuzione di carica:

V =1

4πε0

∫Q

dq

r.

In molti casi, viene data la densita di carica ρ che descrive come la carica e distribuita

nel volume V , da cui si ricava ρ = dq/dV , cioe dq = ρdV . Il calcolo del potenziale si

riduce quindi a un integrale di volume dato da:

V =1

4πε0

∫V

ρdV

r. (4.28)

Va notato il fatto che l’equazione (4.28) non presenta componenti vettoriali perche il

potenziale elettrico e una funzione scalare.

ESEMPIO 4.3. Consideriamo una bacchetta di lunghezza l uniformemente carica con

densita di carica lineare λ e valutiamo il potenziale a una distanza y dall’estremita sinistra

della bacchetta.

Soluzione: si consideri un elemento infinitesimo dx della bacchetta, come mostrato nella

figura a fianco. Questo elemento porta una carica infinitesima pari a dq = λ dx. Il contributo

al potenziale della carica dq vale:

dV =1

4πε0

dq

r=

1

4πε0

λdx

(x2 + y2)1/2,

e integrando da x = 0 a x = l, si trova:

V =λ

4πε0

∫ l

0

dx

(x2 + y2)1/2=

λ

4πε0log

(l +√l2 + y2)

y

).

4.5.4 Relazione tra campo elettrico e potenziale

Dall’equazione (4.23), si ricava che

~E · d~l = −dV .

Sviluppando i due termini in coordinate cartesiane, si ha che:

Exdx+ Eydy + Ezdz = −(∂V

∂xdx+

∂V

∂ydy +

∂V

∂zdz

).

SUPSI-DTI Corso di Fisica e Modellistica Prof. Andrea Danani

Page 81: Corso di Fisica 3 ONDE E ELETTROMAGNETISMO · funzionamento di specchi, prismi, lenti e dei sistemi ottici costruiti con essi. In generale, nell’attraversamento di una super cie

4.5. IL POTENZIALE ELETTRICO 81

Confrontando le due espressioni, segue che:

Ex = −∂V∂x

, Ey = −∂V∂y

, Ez = −∂V∂z

. (4.29)

Quindi, conoscendo la funzione V (x, y, z), si possono trovare le componenti di ~E in

ogni punto calcolando il gradiente di V .

4.5.5 Potenziale in un conduttore carico isolato

Poiche all’interno di un conduttore all’equilibrio, il campo elettrico e nullo, tutti i punti

interni al conduttore sono allo stesso potenziale e anche la superficie del conduttore, in

particolare, e una superficie equipotenziale.

Quale ulteriore proprieta dei conduttori carichi all’equilibrio, e possibile provare

che ad esclusione dei conduttori sferici, la carica superficiale tende ad accumularsi nei

punti in cui la curvatura della superficie e maggiore, ovvero in prossimita delle punte.

Di conseguenza, il campo elettrico esterno puo assumere in quelle zone dei valori molto

alti.Per comprendere questo fenomeno consideriamo due

sfere conduttrici di raggi, rispettivamente R+ e R2

, con R1 < R2 , collegate elettricamente tra loro

tramite un filo conduttore. Se σ1 e σ2 indicano le

densita superficiali di carica sui due conduttori, le

cariche rispettive saranno:

q1 = 4πR21σ1 , q2 = 4πR2

2σ2

e facendo il rapporto membro a membro, segue:

q1

q2

=R2

1σ1

R22σ2

. (4.30)

D’altra parte, siccome sono connesse con un conduttore, le due sfere sono allo stesso

potenziale; assumendo che la distanza tra le sfere sia tale da poter assumere che la

carica su una non abbia alcun effetto sulla distribuzione di carica dell’altra, segue che

il comune valore V del loro potenziale e:

V =1

4πε0

q1

R1

=1

4πε0

q2

R2

da cui segue che:q1

q2

=R1

R2

,

e confrontando con l’espressione (4.30), si ottiene finalmente:

σ1

σ2

=R2

R1

,

SUPSI-DTI Corso di Fisica e Modellistica Prof. Andrea Danani

Page 82: Corso di Fisica 3 ONDE E ELETTROMAGNETISMO · funzionamento di specchi, prismi, lenti e dei sistemi ottici costruiti con essi. In generale, nell’attraversamento di una super cie

4.6. CAPACITA ELETTRICA E DIELETTRICI 82

Dato che R1 < R2, avremo che σ1 > σ2, cioe la sfera piu piccola ha una maggiore densita

di carica superficiale; cio implica che il campo elettrico e piu intenso in prossimita della

sfera piu piccola.

4.6 Capacita elettrica e dielettrici

4.6.1 Capacita

La capacita elettrica di un conduttore isolato e definita come il rapporto fra la sua

carica e il suo potenziale,

C =Q

V. (4.31)

La capacita di un conduttore sferico di raggio R, ad esempio, e data da:

C =Q

V= 4πε0R (4.32)

dato che V = Q/(4πε0R). Da notare che la capacita e costante non solo per il condut-

tore sferico, come si vede dalla (4.32), ma per qualsiasi conduttore carico di qualsiasi

forma geometrica. L’unita di misura della capacita e il Farad, definito come F = CV −1.

4.6.2 Condensatori

Il concetto di capacita elettrica puo essere esteso a un sistema di conduttori. Consi-

deriamo il caso di due conduttori aventi carica Q e −Q. Se V = V1 − V2 e la loro

differenza di potenziale, la capacita del sistema e definita in modo analogo alla (4.31),

vale a dire:

C =Q

V=

Q

V1 − V2

. (4.33)

Un dispositivo di questo tipo viene detto condensatore e i conduttori in questo caso

prendono il nome di armature.Nella figura a fianco e mostrato il simbolo adoperato nel-

la schematizzazione dei circuiti elettrici per rappresentare il

condensatore.

ESEMPIO 4.4. Consideriamo due armature piane, parallele, della stessa superficie S e

distanti d. Calcolare la capacita di tale condensatore.

Soluzione: la densita σ con cui e distribuita la carica su ciascuna armatura vale, in valore

assoluto, Q/S. Se la distanza tra le armature e molto piu piccola della lunghezza e larghezza

della armature, si possono trascurare gli effetti ai bordi ed assumere che il campo elettrico

nella regione compresa tra le armature sia uniforme e valga:

SUPSI-DTI Corso di Fisica e Modellistica Prof. Andrea Danani

Page 83: Corso di Fisica 3 ONDE E ELETTROMAGNETISMO · funzionamento di specchi, prismi, lenti e dei sistemi ottici costruiti con essi. In generale, nell’attraversamento di una super cie

4.6. CAPACITA ELETTRICA E DIELETTRICI 83

E =σ

ε0=

Q

ε0S

pertanto la differenza di potenziale tra le armature e:

V = Ed =Q

ε0Sd ,

cosi applicando la definizione segue che

C =Q

V=ε0S

d

ESEMPIO 4.5. I condensatori possono essere combinati in due modi diversi: in serie e

in parallelo. Discutine la combinazione.

Soluzione: Consideriamo due condensatori originaria-

mente scarichi, rispettivamente di capacita C1 e C2 col-

legati come mostrato in figura. In tale connessione, det-

ta in serie, il valore assoluto della carica su ciascuna ar-

matura deve essere la stessa. Cio e conseguenza del fatto

che la carica totale racchiusa nel volume tratteggiato di

figura deve essere nulla;

infatti la carica inizialmente presente su queste armature e nulla e, siccome la connessione

col generatore determina la sola separazione delle cariche, la carica totale su queste armature

resta nulla. Si avra quindi:

V = V1 + V2 =Q

C1+Q

C1= Q

(1

C1+

1

C2

)

che implica per la capacita del sistema che

1

C=

1

C1+

1

C2

In generale, per N condensatori in serie, la capacita totale e l’inverso della somma dei

reciproci delle singole capacita, vale a dire:

1

C=

1

C1+

1

C2+ · · ·+ 1

CN. (4.34)

SUPSI-DTI Corso di Fisica e Modellistica Prof. Andrea Danani

Page 84: Corso di Fisica 3 ONDE E ELETTROMAGNETISMO · funzionamento di specchi, prismi, lenti e dei sistemi ottici costruiti con essi. In generale, nell’attraversamento di una super cie

4.6. CAPACITA ELETTRICA E DIELETTRICI 84

Nella combinazione in parallelo, le armature sono sotto-

poste a una comune differenza di potenziale (vedi figura)

e le cariche presenti su ciascun condensatore sono Q1 =

C1V , Q2 = C2V . La carica totale Q immagazzinata su

entrambe le coppie e pari a:

Q = Q1 +Q2 = (C1 + C2)V

per cui C = C1 + C2. Per N condensatori in parallelo di

capacita C1, C2, . . . , CN , la capacita equivalente e quindi:

C = C1 + C2 + · · ·+ CN (4.35)

4.6.3 Energia immagazzinata in un campo elettrico

Il caricare un condensatore richiede una spesa di energia dato che bisogna compiere

un lavoro per vincere la repulsione della carica gia presente. Questo lavoro ha come

risultato un aumento dell’energia del conduttore.

Consideriamo a questo proposito un condensatore co-

stituito da due conduttori di forma generica, uno con

carica +q e potenziale V1 e l’altro con carica −q e po-

tenziale V2, con V1 > V2 . Supponiamo di accrescere,

attraverso un circuito esterno, la carica in valore asso-

luto su entrambi i conduttori di una stessa quantita dq

, ossia, in particolare, di portare la carica del primo

conduttore da q a q + dq e la carica del secondo con-

duttore da −q a −q − dq. Cioe e come se la carica dq

fosse stata spostata dall’armatura a potenziale minore

all’armatura a potenziale maggiore.

Il lavoro dL che e necessario spendere contro la forza del campo elettrico in questa

operazione e dato dall’espressione dL = (V1 − V2)dq, dove la differenza di potenziale

V1 − V2 puo essere espressa attraverso la capacita C del sistema come V1 − V2 = q/C.

Questo lavoro incrementera in egual misura l’energia U del sistema, ovvero dU = dL,

quindi:

dU =qdq

C.

L’aumento complessivo di energia del sistema quando la carica passata e Q (pari al

lavoro fatto durante il processo) e quindi:

U =

∫ Q

0

qdq

C=Q2

2C=

1

2CV 2 . (4.36)

Consideriamo un condensatore piano tra le cui armature, di superficie S e separazio-

ne d, e applicata una differenza di potenziale V . La densita di energia u, cioe l’energia

SUPSI-DTI Corso di Fisica e Modellistica Prof. Andrea Danani

Page 85: Corso di Fisica 3 ONDE E ELETTROMAGNETISMO · funzionamento di specchi, prismi, lenti e dei sistemi ottici costruiti con essi. In generale, nell’attraversamento di una super cie

4.6. CAPACITA ELETTRICA E DIELETTRICI 85

potenziale per unita di volume fra le armature sara uniforme dato che il campo elettrico

e costante. Si ha che:

u =U

Sd=

1

2CV 2 1

Sd=

1

2ε0S

dV 2 1

Sd=

1

2ε0

(V

d

)2

Sapendo che V = Ed, sostituendo nella relazione precedente, si trova:

u =1

2ε0E

2 (4.37)

Sebbene provata in un caso particolare, si verifica che tale relazione e di validita

generale e indica che in presenza di un campo elettrico esiste, allo stesso tempo, un

campo di energia con densita u . Pertanto, l’energia immagazzinata in un volume ν in

cui e presente un campo elettrico ~E e pari all’integrale su tale volume dell’espressione

precedente:

U =

∫ν

udν =1

2ε0

∫ν

E2dν . (4.38)

4.6.4 Polarizzazione della materia: dielettrici

In questo paragrafo vogliamo discutere l’effetto di un campo elettrico sulla materia. A

questo proposito, distinguiamo due categorie differenti di molecole.

• Molecole polari: sono molecole caratterizzate

da un momento di dipolo intrinseco. Ad esempio,

nell’acqua (si veda la figura) il momento di dipolo

della molecola e presente anche senza che vi sia

applicato alcun campo elettrico esterno; siccome

la molecola puo essere assimilata ad un sistema

rigido, i due momenti ~p1 e ~p2 si sommano vetto-

rialmente producendo un momento di dipolo in-

trinseco di circa 6.2× 10−3 Cm. Quando non c’e’

un campo elettrico esterno, le molecole si orienta-

no a caso e non producono nessun momento dipolo

netto.

SUPSI-DTI Corso di Fisica e Modellistica Prof. Andrea Danani

Page 86: Corso di Fisica 3 ONDE E ELETTROMAGNETISMO · funzionamento di specchi, prismi, lenti e dei sistemi ottici costruiti con essi. In generale, nell’attraversamento di una super cie

4.6. CAPACITA ELETTRICA E DIELETTRICI 86

• Molecole apolari: sono molecole prive di un mo-

mento di dipolo intrinseco. In questi materiali

l’applicazione di un campo elettrico esterno puo

determinare la generazione di un momento di di-

polo. Consideriamo ad esempio una molecola mo-

noatomica; questa puo essere schematizzata come

un nucleo centrale carico positivamente e circon-

dato da una nube sferica carica negativamente. In

condizioni normali la molecola e neutra ed inol-

tre i baricentri delle cariche positive e negative

coincidono. L’applicazione di un campo elettrico

esterno determina una deformazione della moleco-

la provocando la separazione dei baricentri delle

due cariche nella direzione del campo applicato.

Cio determina la formazione di un momento di

dipolo di tipo indotto.

Nel caso dei materiali polari, invece, l’applicazione di un campo elettrico ~E deter-

minera l’azione sui momenti di dipolo elementari ~p. La configurazione di equilibrio,

corrispondente ad un minimo dell’energia potenziale di interazione tra il dipolo elet-

trico ed il campo esterno si ha quando ~p e ~E sono paralleli, vale a dire quando e nullo

il momento torcente. L’allineamento in verita non e mai completo poiche l’agitazio-

ne termica vi si oppone. Il grado di allineamento aumenta quindi al diminuire della

temperatura e all’aumentare dell’intensita del campo elettrico.

Quando le molecole (o atomi) di un materiale divengono dipoli elettrici orientati

nella direzione del campo elettrico esterno, si parla di polarizzazione. Un mezzo che puo

essere polarizzato da un campo elettrico viene chiamato un dielettrico. Un dielettrico

introdotto tra le armature di un condensatore ne determina un aumento della capacita.

Se il dielettrico satura lo spazio compreso tra le armature, la capacita aumenta di un

fattore adimensionale εr > 1 che prende il nome di costante dielettrica relativa del

materiale.

Analizziamo in dettaglio i fenomeni microscopici che

hanno luogo nella regione di dielettrico compresa tra

le armature del condensatore. All’applicazione di una

differenza di potenziale tra le armature del condensa-

tore, su queste si creeranno delle distribuzioni di carica

superficiale di densita pari (in valore assoluto) a σ. Il

campo elettrico ~E0 che si genera di conseguenza deter-

mina l’orientazione dei dipoli elementari nella propria

direzione. Mentre le cariche interne al materiale vengo-

no a due a due bilanciate, le cariche che si affacciano

alle superfici delle armature restano scoperte.

SUPSI-DTI Corso di Fisica e Modellistica Prof. Andrea Danani

Page 87: Corso di Fisica 3 ONDE E ELETTROMAGNETISMO · funzionamento di specchi, prismi, lenti e dei sistemi ottici costruiti con essi. In generale, nell’attraversamento di una super cie

4.6. CAPACITA ELETTRICA E DIELETTRICI 87

Si creano quindi due ulteriori distribuzioni di carica di densita pari (in valore asso-

luto) a σP ; in particolare σP < 0 in corrispondenza dell’armatura carica positivamente

(dove σ > 0) e σP > 0 in prossimita dell’altra armatura (dove σ < 0); si osservi che la

carica associata a σP non e libera, nel senso che non puo muoversi nel materiale ma e

solo un effetto dell’orientazione dei dipoli elementari.La presenza della carica di polarizzazione determina,

all’interno della regione compresa tra le armature, la

creazione di un nuovo campo elettrico ~EP diretto come

il campo esterno ~E0 ma di verso opposto. Il campo

totale presente all’interno del materiale e quindi:

E = E0 − EP

Percio risulta che il campo elettrico agente sul materia-

le dielettrico ha intensita inferiore a quella del campo

applicato.

Il campo esterno puo essere espresso tramite la densita di carica superficiale σ, vale

a dire E0 = σ/ε0, mentre il campo prodotto dalle cariche di polarizzazione puo essere

espresso come E0 = σP/ε0. Ne consegue che

E = E0 − EP =1

ε0

(σ − σP ) (4.39)

Il risultato dell’applicazione di un campo esterno e l’ac-

quisizione da parte di ogni molecola di un momento

medio 〈~p〉 parallelo al campo esterno ~E0. Sia n il nu-

mero di molecole per unita di volume e 〈~p〉 il momento

di dipolo medio delle molecole, allora una misura del

grado di allineamento delle molecole di un dielettrico e

data dal vettore ~P definito come:

~P = n 〈~p〉 .Tale grandezza prende il nome di vettore polarizzazione. E’ possibile stabilire l’inten-

sita del vettore polarizzazione tra le armature del condensatore osservando che l’insieme

dei dipoli allineati dal campo elettrico e assimilabile ad un unico dipolo orientato nel

verso del campo esterno ~E0 , quindi il modulo del vettore polarizzazione e la risultante

di tutti i dipoli, ovvero il prodotto della carica di polarizzazione qP per la distanza d

diviso per il volume compreso tra le armature, cioe Sd:

P =qPd

Sd=qPS

= σP ; (4.40)

Si noti che essendo σP < 0, il vettore ~P e diretto nel senso positivo.

Dato che ~E e ~P sono vettori aventi la stessa direzione, si introduce un nuovo campo

vettoriale, chiamato vettore spostamento elettrico definito da

~D = ε0~E + ~P . (4.41)

SUPSI-DTI Corso di Fisica e Modellistica Prof. Andrea Danani

Page 88: Corso di Fisica 3 ONDE E ELETTROMAGNETISMO · funzionamento di specchi, prismi, lenti e dei sistemi ottici costruiti con essi. In generale, nell’attraversamento di una super cie

4.6. CAPACITA ELETTRICA E DIELETTRICI 88

~D e espresso in C/m2 e sia n la normale alla superficie di un’armatura del condensatore,

vale che~D · n = σ

Nella maggior parte dei dielettrici risulta che ~P e proporzionale al campo elettrico ~E:

~P = ε0χe ~E ; (4.42)

La quantita adimensionale χe prende il nome di suscettivita dielettrica del mezzo ma-

teriale e fornisce un’indicazione circa la capacita che ha il mezzo di polarizzarsi sotto

l’azione di un campo elettrico. Sostituendo la (4.41) nella (4.42) si trova:

~D = ε0~E + ε0χe ~E = ε0(1 + χe) ~E ; (4.43)

da cui si ricava che εr = 1 + χe , e che finalmente:

~D = ε0εr ~E . (4.44)

SUPSI-DTI Corso di Fisica e Modellistica Prof. Andrea Danani

Page 89: Corso di Fisica 3 ONDE E ELETTROMAGNETISMO · funzionamento di specchi, prismi, lenti e dei sistemi ottici costruiti con essi. In generale, nell’attraversamento di una super cie

Capitolo 5

Campi magnetici

5.1 Introduzione

Un altro tipo di interazione osservata in natura e quella chiamata magnetica. Secoli

prima di Cristo si osservo che certi minerali di ferro come la magnetite avevano la

proprieta di attrarre piccoli pezzi di ferro. Questa proprieta e mostrata alla stato

naturale da ferro, cobalto e manganese e da molti composti di questi metalli e non e

apparentemente in relazione con l’interazione elettrica, perche ne palline di sughero, ne

pezzi di carta sono attrati da questi minerali. Pertanto un nuovo nome, magnetismo1, fu dato a questa proprieta fisica.

Un corpo magnetizzato e chiamato un magnete. Nel XVII secolo, lo scienziato

inglese W. Gilbert riusci a spiegare il comportamento della bussola, supponendo che la

Terra fosse un grande magnete. Sperimentando con magneti si vede che tra essi agiscono

forze attrattive e repulsive; si puo quindi introdurre il concetto di polo magnetico,

analogamente a quello della carica elettrica. Poli dello stesso tipo si respingono e poli

di tipo opposto si attirano. I poli vengono chiamati Nord e Sud, riferendosi all’ago di

una bussola.

In elettrostatica il campo elettrico e stato introdotto come mediatore dell’ intera-

zione tra cariche. Un approccio analogo e stato tentato anche per descrivere i fenomeni

magnetici. Ma anche se vi sono teorie che prevedono l’esistenza del monopolo ma-

gnetico, di fatto non e stato ancora possibile isolare un polo magnetico e quidi questo

approccio si rivela inadeguato. In effetti un magnete possiede sempre due poli opposti:

spezzando una sbarretta magnetica, si riformano sempre poli opposti alle estremita.

Le interazioni elettiche e magnetiche sono connesse molto strettamente e di fatto

sono solo due differenti aspetti di una sola proprieta della materia, la sua carica elet-

trica; per questo motivo le due interazioni devono essere considerate insieme sotto il

nome piu generale di interazione elettromagnetica. Il magnetismo e una manifestazione

1Il nome magnetismo e derivato dall’antica citta dell’Asia Minore chiamata Magnesia dove secondo

la tradizione, il fenomeno fu per la prima volta notato

89

Page 90: Corso di Fisica 3 ONDE E ELETTROMAGNETISMO · funzionamento di specchi, prismi, lenti e dei sistemi ottici costruiti con essi. In generale, nell’attraversamento di una super cie

5.2. FORZA DI LORENTZ 90

di cariche elettriche in moto: i campi magnetici sono prodotti da cariche in moto e sono

avvertiti solo se le cariche sono, a loro volta, in movimento.

5.2 Forza di Lorentz

Prescindendo per il momento dalle sorgenti del campo magnetico, valutiamo come si

esplica l’interazione tra un campo magnetico e una particella carica. Allo scopo assu-

miamo che la particella non sia soggetta ad altri campi, al di fuori di quello magnetico

che supponiamo sia uniforme. Sperimentalmente, si verifica che qualora la carica sia in

quiete, su di essa non si esercita alcuna forza. Supponiamo che la particella sia dotata

di una certa velocita; in tal caso si osservano alcuni effetti sul suo moto che non sono

ascrivibili ad altri campi, in quanto, per ipotesi, assenti. Cio suggerisce l’esistenza di

una certa forma di interazione tra la particella in moto e il campo magnetico presente

nella regione considerata.

Sperimentalmente, se ~B e il vettore associato al

Figura 5.1: Forza di Lorentz

campo magnetico, q e ~v sono, rispettivamente, la ca-

rica e la velocita della particella, la forza ~F agente

sulla particella vale:

~F = q~v × ~B . (5.1)

Si noti che la relazione (5.1) rende impossibile la de-

terminazione del vettore ~B attraverso una singola mi-

sura; infatti, mentre in elettrostatica, misurando q ~E

si puo risalire sia all’intensita che all’orien-tazione di~E, nel caso del magnetismo, la forza e sempre perpendicolare al piano definito dai vet-

tori ~v e ~B, indipendentemente dall’angolo θ compreso tra ~v e ~B, percio l’orientazione di~B non puo essere stabilita. A tale scopo si puo ricercare l’angolo in corrispondenza del

quale la forza espressa dalla (5.1) si annulla, per poi stabilire, con una seconda misura,

l’intensita di ~B.

L’unita di misura del campo magnetico e il Tesla (T) 1. Dall’espressione (5.1) segue

che una carica di 1 C che si muove in un campo magnetico di 1 T con la velocita di

1 m/s perpendicolarmente al campo, e soggetta ad una forza di 1 N , cosi:

[B] = T =N

A×m

Va ricordato che e ancora molto diffusa l’unita di misura denominata Gauss (G),

definita da:

1 G = 10−4T .

Se agiscono contemporaneamente un campo elettrico ~E ed un campo magnetico ~B su

una particella di carica q in moto con velocita ~v , la forza totale agente sulla particella

1in onore dell’ingegnere americano di origine jugoslava Nicholas Tesla (1856-1943)

SUPSI-DTI Corso di Fisica e Modellistica Prof. Andrea Danani

Page 91: Corso di Fisica 3 ONDE E ELETTROMAGNETISMO · funzionamento di specchi, prismi, lenti e dei sistemi ottici costruiti con essi. In generale, nell’attraversamento di una super cie

5.3. MOTO DI UNA CARICA IN UN CAMPO MAGNETICO 91

e data da:~F = q ~E + q~v × ~B (5.2)

~F e detta forza di Lorentz e rappresenta la somma della forza elettrica e magnetica

cui puo essere, in generale, sottoposta una particella carica.

5.3 Moto di una carica in un campo magnetico

Consideriamo dapprima una particella di massa m e carica q immersa ad un campo

magnetico uniforme ~B, con velocita iniziale ~v0 giacente su di un piano perpendicolare

alla direzione di ~B. In queste condizioni l’unica forza che agisce e la forza di Lorentz.

Quindi, nel suo moto, la particella e sotto-

Figura 5.2: Moto con forza di

Lorentz

posta ad una forza di modulo costante, normale

alla velocita, e pertanto possiamo concludere che

la particella compie un moto circolare uniforme.

L’equazione di Newton fornisce quindi:

mv2

0

R= qv0B

ossia

R =mv

qB

La velocita angolare e data da:

ω =v

R=

q

mB .

Il fatto che ω dipenda solo dal rapporto carica/massa e dal campoB puo essere sfruttato

per misurare le masse di ioni distinguendo i vari isotopi.

Supponiamo ora che la velocita ~v0 formi un angolo θ con la direzione del campo

magnetico ~B. Decomponendo il vettore ~v0 lungo le direzioni parallela e perpendicolare

a ~B si hanno, rispettivamente i vettori ~v0⊥ e ~v0‖, tali che ~v0⊥ = v0 sin θ e ~v0‖ =

v0 cos θ, e usando la legge di Lorentz, si ottiene che il moto della particella lungo

la direzione parallela a ~B e rettilineo uniforme con velocita pari a v0 cos θ, mentre

ortogonalmente a ~B il moto e circolare uniforme, con raggio di curvatura R e periodo

T dati, rispettivamente, dalle relazioni:

SUPSI-DTI Corso di Fisica e Modellistica Prof. Andrea Danani

Page 92: Corso di Fisica 3 ONDE E ELETTROMAGNETISMO · funzionamento di specchi, prismi, lenti e dei sistemi ottici costruiti con essi. In generale, nell’attraversamento di una super cie

5.4. L’EFFETTO HALL 92

R =mv0⊥

qB=mv sin θ

qB, T =

2πm

qB(5.3)

Pertanto, la traiettoria descritta dalla particella

e un’elica cilindrica (vedi figura a fianco) il cui

passo p vale:

p = v0T =2πmv0 cos θ

qB

5.4 L’effetto Hall

Nel 1879, il fisico americano E.C Hall (1855-1929) scopri che quando una lastra metal-

lica lungo la quale passa una corrente I e posta in un campo magnetico perpendicolare

alla lastra, appare una differenza di potenziale tra i punti opposti sui bordi della piastra.

Figura 5.3: L’effetto Hall

Questo fenomeno, detto appunto effetto Hall, e una tipica applicazione della forza

di Lorentz. Supponiamo dapprima che i portatori della corrente elettrica nella lastra

metallica siano elettroni, aventi una carica negativa q = −e. Con l’asse Z parallelo

alla corrente I, il moto effettivo e nella direzione −Z con velocita ~v− (5.4a). Se il

campo ~B e applicato perpendicolarmente alla lastra, nella direzione X, gli elettroni

sono soggetti alla forza ~F = −e~v− × ~B che e diretta lungo l’asse +Y . Pertanto, gli

elettroni vengono trasportati verso il lato destro della lastra, che diviene cosi carico

negativamente. Il lato sinistro di conseguenza si carica positivamente e si produce un

campo elettrico ~E parallelo all’asse Y . Quando la forza (−e) ~E sugli elettroni diretta

SUPSI-DTI Corso di Fisica e Modellistica Prof. Andrea Danani

Page 93: Corso di Fisica 3 ONDE E ELETTROMAGNETISMO · funzionamento di specchi, prismi, lenti e dei sistemi ottici costruiti con essi. In generale, nell’attraversamento di una super cie

5.5. FORZA MAGNETICA SU UNA CORRENTE ELETTRICA 93

verso sinistra bilancia la forza magnetica verso destra, ne risulta l’equilibrio. Si produce

quindi una differenza di potenziale tra bordi opposti, con il lato sinistro al potenziale

piu alto. Questo e l’effetto Hall normale o negativo, mostrato nella maggior parte dei

metalli, come oro, argento, platino, rame, ecc. Ma con alcuni metalli, come cobalto,

zinco, ferro e altri materiali, come i semiconduttori, si produce un effetto Hall opposto,

o positivo. Per spiegare la differenza, supponiamo che i portatori di corrente siano

particelle cariche positivamente con q = +e. La loro velocita sara nella direzione della

corrente, cioe lungo l’asse Z, come in Fig.(5.4b). La forza magnetica e diretta verso

l’asse +Y , ma poiche le cariche sono positive, il lato destro si carica positivamente e il

campo elettrico risultante e nella direzione −Y e la differenza di potenziale e opposta

a quella dell’effetto Hall normale.

Questo effetto in origine appariva in contraddizione con la convinzione che gli unici

portatori della corrente in un conduttore fossero elettroni. Tuttavia nei materiali sopra

citati, a causa di qualche difetto nella struttura cristallina, vi sono posti in cui vi e la

mancanza di un elettrone, una cosiddetta lacuna elettronica. Quando un elettrone si

muove e riempie una lacuna, si produce una lacuna nella posizione originaria, per cui

le lacune si muovono nella direzione opposta a quella degli elettroni sotto l’azione del

campo elettrico applicato. Per questo motivo, l’effetto Hall fornisce un metodo assai

utile per determinare il segno dei portatori della corrente elettrica in un conduttore.

Da notare che nel caso dei metalli, l’effetto Hall produce tensioni generalmente molto

piccole, dell’ordine dei µV .

5.5 Forza magnetica su una corrente elettrica

Come noto, la corrente elettrica e un flusso di cariche elettriche in moto. L’intensita

della corrente e definita come la carica passante nell’unita di tempo attraverso una

sezione del conduttore. Consideriamo una sezione di un conduttore attraverso il quale

sono in moto con velocita ~v particelle con carica q. Se ci sono n particelle per unita

di volume, il numero totale di particelle passanti attraverso l’unita di area per tempo

e n~v, e la densita di corrente, definita come la carica passante per l’unita di area per

unita di tempo e il vettore:

~j = nq~v (5.4)

Se S e l’area in sezione del conduttore, orientata perpendicolarmente a ~j, la corrente e

lo scalare

I = jS = nqvS . (5.5)

Se il conduttore viene immerso in un campo magnetico ~B, la forza per unita di volume

sara:

~f = nq~v × ~B = ~j × ~B . (5.6)

SUPSI-DTI Corso di Fisica e Modellistica Prof. Andrea Danani

Page 94: Corso di Fisica 3 ONDE E ELETTROMAGNETISMO · funzionamento di specchi, prismi, lenti e dei sistemi ottici costruiti con essi. In generale, nell’attraversamento di una super cie

5.6. COPPIA MAGNETICA SU UNA CORRENTE ELETTRICA 94

La forza totale su un elemento infinitesimo di volume dV sara d~F = ~fdV = ~j ×~BdV , e la forza totale su un volume finito si ottiene integrando su tutto il volume:

~F =

∫V

~j × ~BdV . (5.7)

Se si considera il caso in cui la corrente scorre lungo un filo, dV = Sdl e pertanto

~F =

∫L

~j × ~BSdl . (5.8)

Ora ~j = j~uT , dove ~uT e il versore tangente all’asse del filamento e dato che la corrente

I = jS e la stessa in tutti i punti del conduttore, si ottiene per la forza su un conduttore

percorso da una corrente elettrica che:

Figura 5.4: Forza su un filo

conduttore

~F =

∫L

(j~uT )× ~BSdl =

∫L

(jS)~uT× ~Bdl = I

∫L

~uT× ~Bdl

(5.9)

Nel caso di un conduttore rettilineo di lun-

ghezza L in un campo magnetico uniforme, dato

che∫Ldl = L, si ottiene

~F = IL~uT × ~B (5.10)

Il conduttore e percio soggetto a una forza per-

pendicolare al suo asse e al campo magnetico.

Questo e il principio sul quale funzionano i mo-

tori elettrici.

5.6 Coppia magnetica su una

corrente elettrica

Possiamo applicare l’eq.(5.10) per calcolare la coppia dovuta alla forza che un campo

magnetico produce su un circuito elettrico. Per semplicita consideriamo una spira

rettangolare percorsa da una corrente I e immersa in un campo magnetico uniforme~B, diretto normalmente ad una coppia dei suoi lati.

Trascuriamo il campo magnetico prodotto dalla spira stessa e supponiamo quindi

che tale spira sia vincolata ad un asse passante per il punto medio di una coppia dei

suoi lati, in modo da poter ruotare attorno a questo asse (si veda la figura 5.6) 1.

Analizziamo le singole forze agenti su ciascun tratto della spira. Le forze ~F ′ agenti

sui lati inferiore e superiore di lunghezza L′ hanno lo stesso modulo ma verso opposto.

Esse tendono a deformare il circuito ma non producono nessun momento.

1L’azione del campo magnetico uniforme sulla spira non vincolata determina una forza risultante

nulla

SUPSI-DTI Corso di Fisica e Modellistica Prof. Andrea Danani

Page 95: Corso di Fisica 3 ONDE E ELETTROMAGNETISMO · funzionamento di specchi, prismi, lenti e dei sistemi ottici costruiti con essi. In generale, nell’attraversamento di una super cie

5.6. COPPIA MAGNETICA SU UNA CORRENTE ELETTRICA 95

Figura 5.5: Spira rettangolare immersa in un campo magnetico

L’intensita delle forze agenti sui lati verticali della spira e in modulo F = IBL e

anche in questo caso le due forze hanno lo stesso modulo e la stessa direzione, con verso

opposto; tuttavia tali forze non condividono la medesima retta di applicazione. Per la

coppia di forze ~F il momento torcente τ risulta quindi diverso da zero; per la singola

forza questo momento ha intensita pari a:

τF = FL′

2sin θ , (5.11)

dove θ e l’angolo tra la normale ~n alla spira e ~B. Dato che entrambi i momenti hanno

uguali intensita , direzioni e versi, il momento totale τ sara il doppio di τF , percio

abbiamo:

τ = 2τF = 2FL′

2sin θ = IBLL′ sin θ (5.12)

D’altra parte, il prodotto LL′ rappresenta l’area S della spira, cosi, introducendo il

vettore

~m = ISn , (5.13)

la relazione (5.12) diventa

τ = mB sin θ

che in notazione vettoriale diventa

~τ = ~m× ~B (5.14)

Percio il sistema raggiunge l’equilibrio meccanico quando τ = 0, ovvero per θ = 0, cioe

quando la spira si dispone perpendicolarmente al campo magnetico e i vettori ~B e ~m

risultano allineati.

Il vettore ~m definito nella relazione (5.13) dell’esempio precedente prende il nome di

momento di dipolo magnetico; il suo verso segue la regola della mano destra, nel senso

SUPSI-DTI Corso di Fisica e Modellistica Prof. Andrea Danani

Page 96: Corso di Fisica 3 ONDE E ELETTROMAGNETISMO · funzionamento di specchi, prismi, lenti e dei sistemi ottici costruiti con essi. In generale, nell’attraversamento di una super cie

5.7. LA LEGGE DI BIOT SAVART 96

che, se si associa il verso della corrente nella spira a quello delle dita della mano destra

che si chiudono sul palmo della mano, il verso di ~m punta nella direzione indicata dal

pollice nella Fig.(5.6).

Figura 5.6: Momento di dipolo magnetico

5.7 La legge di Biot Savart

Nel 1820, il fisico danese H.C. Oersted (1777-1851) notando la deviazione dell’ago di

una bussola posta vicino a un conduttore attraverso cui passava corrente, fu il primo

a osservare che una corrente elettrica produce un campo magnetico nello spazio che la

circonda.

Dopo molti esperimenti, e stata ottenuta un’espressio-

Figura 5.7: Campo ma-

gnetico di una corrente

elettrica

ne generale per calcolare il campo magnetico prodot-

to da una corrente chiusa di forma qualsiasi. Questa

espressione, chiamata legge di Biot-Savart, e:

d ~B =µ0

I~uT × ~urr2

dl , (5.15)

dove il significato dei simboli e indicato nella Fig.(5.7).

Considerando la sovrapposizione dei contributi di tut-

ti gli elementi d~l che compongono il conduttore L, si

ottiene~B =

µ0I

∮L

~uT × ~urr2

dl , (5.16)

Occorre notare le somiglianze tra l’espressione della legge di Biot-Savart relativa al

magnetismo e l’espressione della legge di Coloumb dell’elettrostatica. Mentre una carica

puntiforme determina un campo elettrico, un elemento di corrente Id~l produce un

campo magnetico; inoltre, nello stesso modo in cui il campo elettrico prodotto da

una carica puntiforme dipende dalla distanza r, cosi l’intensita del campo magnetico

dipende dall’inverso del quadrato della distanza dall’elemento di corrente. Tuttavia le

direzioni dei due campi risultano completamente differenti. Il campo elettrico generato

da una carica puntiforme e radiale mentre il campo magnetico prodotto da un elemento

di corrente e perpendicolare sia all’elemento di corrente che al raggio vettore ~r.

SUPSI-DTI Corso di Fisica e Modellistica Prof. Andrea Danani

Page 97: Corso di Fisica 3 ONDE E ELETTROMAGNETISMO · funzionamento di specchi, prismi, lenti e dei sistemi ottici costruiti con essi. In generale, nell’attraversamento di una super cie

5.8. APPLICAZIONI DELLA LEGGE DI BIOT-SAVART 97

5.8 Applicazioni della legge di Biot-Savart

5.8.1 Campo magnetico di una corrente rettilinea

Come prima applicazione della formula (5.16), stabiliamo il campo magnetico presente

in un punto P posto a distanza R da un filo conduttore rettilineo percorso da una

corrente stazionaria I.

Figura 5.8: Campo magnetico prodotto da una corrente rettilinea e linee di campo

corrispondenti

Riferendosi alla Fig.(5.8), per ogni punto P e ogni elemento dl della corrente, la

direzione del vettore ~uT × ~ur e quella del versore ~uθ. Il campo magnetico in P e quindi

tangente al cerchio di raggio R che passa attraverso P . Percio e necessario trovare

solamente il modulo di ~B. Il modulo di ~uT × ~ur e sin θ, poiche ~uT e ~ur sono versori.

Quindi per una corrente rettilinea, possiamo scrivere l’Eq.(5.16) in modulo come

B =µ0I

∫ ∞−∞

sin θ

r2dl (5.17)

Dalla Fig.(5.8) si deduce che r = R/ sin θ e l = −R/ tan θ, da cui segue che dl =

(R/ sin2 θ)dθ. Sostituendo in (5.17), si trova

B =µ0I

∫ π

0

sin θsin2 θ

R2

R

sin2 θdθ =

µ0I

4πR

∫ π

0

sin θ dθ , (5.18)

dove l = −∞ corrisponde a θ = 0 e l = +∞ a θ = π. Quindi, si ottiene

B =µ0I

2πR(5.19)

Le linee di forza sono cerchi concentrici alla corrente e nella Fig.(5.8) e indicata la

regola della mano destra per determinare la direzione del campo magnetico relativo

alla direzione della corrente.

SUPSI-DTI Corso di Fisica e Modellistica Prof. Andrea Danani

Page 98: Corso di Fisica 3 ONDE E ELETTROMAGNETISMO · funzionamento di specchi, prismi, lenti e dei sistemi ottici costruiti con essi. In generale, nell’attraversamento di una super cie

5.8. APPLICAZIONI DELLA LEGGE DI BIOT-SAVART 98

Per un filo di lunghezza finita, basta modificare i limiti di integrazione nell Eq.(5.18)

usando gli angoli θ1 e θ2 sottesi dagli estremi del filo e il punto P . Si ottiene:

µ0I

4πR

∫ θ2

θ1

sin θ dθ =µ0I

4πR(cos θ1 − cos θ2) (5.20)

5.8.2 Forze tra correnti

Si puo applicare la formula (5.19) combinata con l’Eq.(5.9) per calcolare l’interazione

fra due correnti elettriche. Consideriamo per semplicita due correnti parallele I e I ′

nello stesso verso separate da una distanza R (vedi Fig.5.9).

Figura 5.9: Campo magnetico prodotto da una corrente rettilinea e linee di campo

corrispondenti

La forza ~F ′ su I ′ prodotta da I sara

~F ′ = I ′∫~u′T × ~Bdl′ . (5.21)

Dato che ~u′T × ~B = −~uR B, usando l’Eq.(5.19) per B, abbiamo

~F ′ = I ′∫~uR

µ0I

2πRdl′ = −~uR

µ0II′

2πRL′ . (5.22)

Questo risultato indica che la corrente I attira I ′. Lo stesso risultato si ottiene

per la forza su I prodotta da I ′. Quindi due correnti parallele nello stesso verso si

attraggono con la stessa forza. Si puo facilmente verificare che se le correnti hanno

verso opposto, esse si respingono. Questo risultato puo essere esteso a correnti di

qualsiasi configurazione.

La forza agente tra fili conduttori paralleli percorsi da corrente e usata per definire

l’Ampere nella maniera seguente: se due fili paralleli di lunghezza indefinita, posti alla

distanza di 1 m e percorsi dalla stessa corrente, interagiscono con una forza per unita

di lunghezza di 2× 10−7 N/m, allora la corrente che li attraversa e, per definizione, di

SUPSI-DTI Corso di Fisica e Modellistica Prof. Andrea Danani

Page 99: Corso di Fisica 3 ONDE E ELETTROMAGNETISMO · funzionamento di specchi, prismi, lenti e dei sistemi ottici costruiti con essi. In generale, nell’attraversamento di una super cie

5.8. APPLICAZIONI DELLA LEGGE DI BIOT-SAVART 99

1 A. Di fatto, tale definizione, fissa il valore della permeabilita magnetica del vuoto µ0,

che vale cosi 4× 10−7 (T ×m)/A.

5.8.3 Campo magnetico di una corrente circolare

Consideriamo una spira circolare di rag-

Figura 5.10: Campo magnetico sull’asse di

una corrente circolare

gio a percorsa da una corrente I. Stabi-

liamo l’intensita del campo elettrico in

corrispondenza del punto P posto sul-

l’asse Z della spira a una distanza R.

Il contributo al campo magnetico da

parte di un elemento dl di corrente e

dato dalla relazione (5.15). Il campo

d ~B prodotto in P dall’ elemento dl ha

modulo

dB =µ0

Idl

r2, (5.23)

ed e perpendicolare al piano PAA′ definito da ~ur e ~ur; quando si considerano i contributi

dB di tutti gli elementi dl che formano la spira, si osserva che le componenti parallele

all’asse Z si sommano, mentre quelle perpendicolari si elidono a due a due, per la

simmetria del problema.

Nei punti dell’asse della spira il campo magnetico e dunque parallelo all’asse stesso

e concorde a questo se l’orientazione corrisponde a quella della corrente secondo la

regola della mano destra. Il contributo al campo da parte della componente diretta

lungo l’asse Z e:

dBZ = dB cosα =µ0

Idl

r2cosα , (5.24)

dove cosα = a/r. Integrando lungo tutta la spira, si ha:

dB =

∮dBZ =

µ0Ia

4πr3

∮dl =

µ0Ia2

2r3, (5.25)

Infine poiche r2 = a2 +R2, si ha:

B =µ0Ia

2

2(a2 +R2)3/2(5.26)

Al centro della spira, per Z pari a 0, il campo assume la massima intensita Bmax e

risulta:

Bmax =µ0I

2a(5.27)

SUPSI-DTI Corso di Fisica e Modellistica Prof. Andrea Danani

Page 100: Corso di Fisica 3 ONDE E ELETTROMAGNETISMO · funzionamento di specchi, prismi, lenti e dei sistemi ottici costruiti con essi. In generale, nell’attraversamento di una super cie

5.8. APPLICAZIONI DELLA LEGGE DI BIOT-SAVART 100

SUPSI-DTI Corso di Fisica e Modellistica Prof. Andrea Danani

Page 101: Corso di Fisica 3 ONDE E ELETTROMAGNETISMO · funzionamento di specchi, prismi, lenti e dei sistemi ottici costruiti con essi. In generale, nell’attraversamento di una super cie

Capitolo 6

Induzione elettromagnetica

6.1 Introduzione

La generazione di forze elettromotrici e quindi di correnti in circuiti da parte di campi

magnetici variabili puo essere verificata attraverso dei semplici esperimenti. Avvici-

nando un magnete ad una spira connessa ad un galvanometro e possibile rilevare la

deviazione dell’ago dello strumento, mentre, allontanando il magnete, si osserva la de-

viazione dell’ago nella direzione opposta. La stessa fenomenologia puo essere osservata

quando il magnete e fermo mentre e la spira ad essere posta in moto. Invece, in assenza

di moto relativo del magnete rispetto alla spira non si nota alcuna deviazione dell’ago

del galvanometro. Inoltre, piu l’avvicinamento e veloce e piu la corrente e intensa, e

un’inversione dei poli del magnete porta all’inversione del senso della corrente. Questi

Figura 6.1: Primo esperimento di Faraday

risultati portano a concludere che e possibile generare una corrente in un circuito, detta

corrente indotta, in assenza di una batteria. In tale circostanza si dira che la corrente

nel circuito in tali condizioni e prodotta da una forza elettromotrice indotta.

101

Page 102: Corso di Fisica 3 ONDE E ELETTROMAGNETISMO · funzionamento di specchi, prismi, lenti e dei sistemi ottici costruiti con essi. In generale, nell’attraversamento di una super cie

6.2. LA LEGGE DI FARADAY-HENRY 102

6.2 La legge di Faraday-Henry

Attorno al 1830, Michael Faraday e Joseph Henry intuirono dai risultati sperimentali

citati che l’induzione di una corrente in un circuito avviene per effetto di un campo

magnetico variabile.

Abbiamo visto che il flusso di una corrente tra due punti in un circuito e determinato

dalla presenza di una differenza di potenziale non nulla tra questi punti. Indicando con

A e B tali punti, la differenza di potenziale si esprime come:

VA − VB =

∫ B

A

~E · d~l

Se si fa riferimento ad un percorso chiuso C, come per una spira, si ha che:

VE =

∮C

~E · d~l

Nel caso elettrostatico, il campo elettrico e conservativo, per cui VE e nullo; affinche

scorra una corrente in un circuito e necessaria quindi la presenza di un campo di natura

non elettrostatica, come quello prodotto, ad esempio, da una batteria; tale campo e

denominato campo elettromotore. Faraday verifico che questa forza elettromotrice e

proporzionale alla rapidita di variazione nel tempo del flusso del campo magnetico

attraverso la superficie sottesa dal circuito in esame.

L’intensita della forza elettromotrice indotta VL in un circuito di superficie S, per

effetto del campo magnetico ~B e data dalla seguente legge di Faraday-Henry :

VL = −dΦB

dt(6.1)

La variazione del flusso si puo ottenere in differenti modi:

a) con la variazione della campo magnetico che attraversa il circuito;

b) per una modifica della superficie attraverso la quale si calcola il flusso;

c) con una variazione dell’angolo compreso tra la direzione del campo magnetico e la

direzione normale alla superficie considerata.

6.3 La legge di Lenz

La polarita della forza elettromotrice indotta puo essere stabilita a partire dalla corret-

ta applicazione della convenzione relativa all’orientamento della superficie attraverso

la quale si determina il flusso, rispetto al verso di percorrenza del contorno di tale

superficie. Tuttavia questa polarita si puo ricavare su basi prettamente fenomenologi-

che, dalla applicazione della legge di Lenz, la quale afferma che la polarita della forza

elettromotrice indotta in un circuito e tale da produrre una corrente che genera una

SUPSI-DTI Corso di Fisica e Modellistica Prof. Andrea Danani

Page 103: Corso di Fisica 3 ONDE E ELETTROMAGNETISMO · funzionamento di specchi, prismi, lenti e dei sistemi ottici costruiti con essi. In generale, nell’attraversamento di una super cie

6.4. INDUZIONE DI MOVIMENTO 103

campo magnetico ~B1 che si oppone alla variazione del flusso attraverso il circuito. In

altri termini, la corrente indotta tende a mantenere costante l’originario valore del

campo magnetico.

Nella figura (6.2), il circuito e immerso in un campo magnetico ~B e per effetto della

variazione del flusso di ~B attraverso il circuito, questo sara sede di una forza elettromo-

trice. La legge di Lenz afferma che tale forza elettromotrice determinera una corrente

che percorrera il circuito, in maniera da generare un campo magnetico ~B tale da op-

porsi all’aumento dell’intensita del campo ~B e nella figura, sono illustrati i quattro casi

possibili . Esiste una giustificazione di carattere energetico a tale fenomeno; supponia-

mo, per assurdo, che la forza elettromotrice indotta sia tale da produrre una corrente

il cui verso determina un campo magnetico che si somma col campo originale anziche

sottrarsi. In questo caso, ad un aumento di ~B corrisponderebbe un ulteriore aumen-

to del campo magnetico totale, col conseguente aumento dell’intensita della corrente

indotta. Cio innescherebbe un processo che determinerebbe la crescita indefinita della

corrente in seno al circuito; d’altra parte, poiche al passaggio di corrente e associata

una dissipazione di energia, vuol dire che in tale circostanza si avrebbe la generazione

progressiva di energia a spese di un campo magnetico iniziale di intensita finita. Cio e

un palese assurdo derivante dalla scorretta scelta del verso della corrente indotta.

Figura 6.2: Campo magnetico Bi creato dalla corrente indotta per flussi crescenti (a, c)

e decrescenti (b, d)

6.4 Induzione di movimento

Consideriamo un circuito C immerso in un campo magnetico ~B. La variazione del

flusso del campo magnetico concatenato col circuito puo ottenersi in varie maniere che

di solito possono ricondursi a due casi: il flusso di ~B varia perche ~B varia nel tempo

mentre il circuito C resta fermo; oppure il flusso di ~B varia siccome cambia col tempo

la configurazione del circuito C in un campo magnetico stazionario. Questo secondo

caso e detto induzione di movimento. Consideriamo a questo proposito due semplici

casi.

SUPSI-DTI Corso di Fisica e Modellistica Prof. Andrea Danani

Page 104: Corso di Fisica 3 ONDE E ELETTROMAGNETISMO · funzionamento di specchi, prismi, lenti e dei sistemi ottici costruiti con essi. In generale, nell’attraversamento di una super cie

6.4. INDUZIONE DI MOVIMENTO 104

Consideriamo dei conduttori disposti come in Fig.(6.3), ove il conduttore PQ puo

muoversi parallelamente con velocita v mantenendosi in contatto con i conduttori RT

e SU . Il sistema PQRS forma un circuito chiuso. Supponiamo ora che che esista un

campo magnetico uniforme B perpendicolare al piano del conduttore.

Figura 6.3: Fem introdotta in un conduttore in moto con B uniforme

Ciascuna carica q nel conduttore PQ in moto e soggetta alla forza di Lorentz q~v× ~Bagente lungo QP . Questa si puo supporre dovuta a un campo elettrico equivalente dato

da

~Eeq = ~v × ~B

Se PQ = l, esiste una differenza di potenziale tra P e Q data da VE = Eeq l = Bvl,

dato che ~v e ~B sono perpendicolari.

D’altra parte, se indichiamo con x la lunghezza del tratto SP , l’area del circuito

PQRS e pari a lx e il flusso del campo magnetico diventa

φB = Blx

per cui tenendo conto del fatto che dx/dt = v, si ottiene:

VL = −dΦB

dt= − d

dt(Blx) = −Bldx

dt= −Blv

che corrisponde al risultato ottenuto in precedenza.

Come secondo esempio, consideriamo un circuito rettangolare ruotante con frequen-

za angolare ω immerso in un campo magnetico uniforme ~B. Quando la normale ~n al

circuito e inclinata di un angolo ϑ = ωt rispetto al campo magnetico, tutti i punti di

PQ si muovono con velocita ~v tale che il campo elettrico equivalente ~Eeq = ~v× ~B e ri-

volto da Q a P e ha modulo Eeq = vB sinϑ. Ragionamento analogo vale per il lato RS,

SUPSI-DTI Corso di Fisica e Modellistica Prof. Andrea Danani

Page 105: Corso di Fisica 3 ONDE E ELETTROMAGNETISMO · funzionamento di specchi, prismi, lenti e dei sistemi ottici costruiti con essi. In generale, nell’attraversamento di una super cie

6.5. L’AUTOINDUZIONE 105

Figura 6.4: Spira rotante in un campo magnetico

mentre non vi e differenza di potenziale sui lati QR e SP . Ponendo che PQ = RS = l,

si ottiene

VL =

∮LEeq dl = 2lvB sinϑ

Dato che v = ω(x/2) e che lx = S e l’area del circuito, si ottiene finalmente

VL = 2lvB sinϑ = 2l(ωx/2)B sinωt = ωSB sinωt

D’altra parte, il flusso magnetico attraverso il circuito e dato da:

φB = ~B · ~nS = BS cosϑ = BS cosωt

Percio, si ottiene che

VL = −dΦB

dt= −SB d

dt(cosωt) = ωSB sinωt

6.5 L’autoinduzione

Per avere una forza elettromotrice indotta in un circuito, non e strettamente necessa-

rio che questo risulti immerso in un campo magnetico esterno variabile; infatti, se il

circuito e percorso da una corrente variabile, tale corrente produrra un campo magne-

tico variabile che si concatenera con lo stesso circuito determinando un flusso variabile;

questa variazione provochera di conseguenza la generazione di una forza elettromotrice

che, in tale circostanza, e detta autoindotta. Per tale motivo il fenomeno descritto

SUPSI-DTI Corso di Fisica e Modellistica Prof. Andrea Danani

Page 106: Corso di Fisica 3 ONDE E ELETTROMAGNETISMO · funzionamento di specchi, prismi, lenti e dei sistemi ottici costruiti con essi. In generale, nell’attraversamento di una super cie

6.6. CIRCUITI RL 106

prende il nome di autoinduzione. Sperimentalmente si verifica che la corrente I che at-

traversa il circuito e legata al flusso φI(B) del campo magnetico prodotto dalla corrente

I attraverso il circuito considerato, dalla relazione:

φI(B) = LI (6.2)

Il coefficiente L dipende dalla forma del conduttore ed e chiamato autoinduttanza del

circuito. L’unita di misura dell’autoinduttanza e denominata henry (H) e si ha che

[H] = Tm2/A.

Combinando le equazioni (6.1) e (6.2), abbiamo per la fem autoindotta,

VL = −dΦI

dt= −LdI

dt, (6.3)

supponendo che la forma del circuito rimanga invariata. Quindi VL agisce sempre in

modo da opporsi al cambiamento della corrente. L’effetto di un’induttanza in seno ad

un circuito e quello di impedire alla corrente di aumentare o decrescere istantaneamente.

Tipicamente e possibile assumere che in un circuito l’induttanza sia concentrata in

particolari dispositivi, come le bobine, detti induttori.

6.6 Circuiti RL

Abbiamo visto che se si introduce improvvisamente una fem VE in un circuito RC, la

carica tende esponenzialmente al suo valore finale di equilibrio CVE con una costante

di tempo capacitiva τC = RC. Se si rimuove la fem, la carica si annulla sempre in

modo esponenziale secondo la legge Q = Q0e−t/τC . Una crescita (o diminuzione) simile

di corrente avviene in un circuito RL costituito cioe da una sola maglia contenente una

resistenza R e un’induttanza L.

Figura 6.5: a) circuito LR b) legge di Lenz

Con riferimento alla figura (6.5), la bobina L impedisce che alla chiusura dell’inter–

ruttore nella posizione 1, la corrente diventi istantaneamente uguale a VE/R. Infatti,

al crescere della corrente nel tempo, aumenta anche il flusso magnetico concatenato col

circuito e, in particolare, con la bobina. Tale aumento induce ai capi della bobina una

forza elettromotrice che per la legge di Lenz, si oppone alla variazione di flusso. La

SUPSI-DTI Corso di Fisica e Modellistica Prof. Andrea Danani

Page 107: Corso di Fisica 3 ONDE E ELETTROMAGNETISMO · funzionamento di specchi, prismi, lenti e dei sistemi ottici costruiti con essi. In generale, nell’attraversamento di una super cie

6.7. ENERGIA IMMAGAZZINATA IN UNA BOBINA 107

forza elettromotrice deve determinare, quindi, una corrente opposta a quella originaria

che rallentera l’aumento complessivo della corrente. In pratica la bobina agisce in seno

al circuito come un generatore di forza elettromotrice con polarita opposta rispetto alla

batteria che alimenta il circuito. La legge di Ohm diventa quindi:

RI = VE + VL ossia RI = VE − LdI

dt, (6.4)

che corrisponde all’equazione differenziale lineare:

dI

dt+R

LI =

VEL

. (6.5)

La soluzione dell’equazione (6.5), con la condizione iniziale I(0) = 0 e data da:

I(t) =VER

(1− e−t/τL) con τL =L

R. (6.6)

Se si stacca la batteria del circuito (interruttore su posizione 2), l’equazione differenziale

che regola la diminuzione della corrente si ottiene ponendo VE = 0 in (6.5), per cui:

dI

dt+R

LI = 0 . (6.7)

La soluzione con la condizione iniziale I(0) = I0 = VE/R e:

I(t) =VEe

−t/τL= I0e

−t/τL (6.8)

Quindi piu elevata e la resistenza R o piccola e l’induttanza L, piu rapida e la decrescita

della corrente.

6.7 Energia immagazzinata in una bobina

Moltiplicando per I l’equazione (6.4), si ottiene

VEI = RI2 + LIdI

dt. (6.9)

Questa espressione rappresenta il bilancio energetico del circuito. Il primo membro e

la potenza spesa dal generatore per mantenere la corrente I nel circuito; il secondo

membro e somma di due termini: il primo e la potenza dissipata nella resistenza R per

effetto Joule, mentre il secondo indica la rapidita con cui viene immagazzinata l’energia

nella bobina L. In particolare, indicando con UL l’energia immagazzinata, in un certo

istante nella bobina, allora:dULdt

= LIdI

dt. (6.10)

Per ricavare l’energia magnetica necessaria per incrementare la corrente da zero a I, si

integrano ambo i membri dell’espressione dUm = LIdI e si ottiene:

UL =

∫ UL

0

dUL =

∫ I

0

LIdI =1

2LI2 (6.11)

SUPSI-DTI Corso di Fisica e Modellistica Prof. Andrea Danani

Page 108: Corso di Fisica 3 ONDE E ELETTROMAGNETISMO · funzionamento di specchi, prismi, lenti e dei sistemi ottici costruiti con essi. In generale, nell’attraversamento di una super cie

6.8. OSCILLAZIONI ELETTRICHE: CIRCUITI RCL 108

Si puo notare l’analogia di questa relazione con l’espressione dell’energia UC immagaz-

zinata in un condensatore C caricato con una carica Q, vale a dire:

UC =Q2

2C(6.12)

6.8 Oscillazioni elettriche: circuiti RCL

Esistono quindi tre parametri che caratterizzano il flusso di elettricita in un circuito

elettrico: la capacita C, la resistenza R e l’autoinduttanza L.

Figura 6.6: Circuiti RCL senza e con fem esterna

Analizziamo il caso in cui agiscano solo le fem VL e VC . Applicando la legge di

Ohm, abbiamo:

RI = VL + VC = −LdIdt− Q

C. (6.13)

Derivando rispetto a t e riordinando i termini, si ottiene:

Ld2I

dt+R

dI

dt+

1

CI = 0 . (6.14)

La soluzione di questa equazione differenziale e data da:

I(t) = I0e−γt sin(ωt+ α) (6.15)

con

γ = R/2L , ω =√

1/LC −R2/4L2 . (6.16)

Si stabilisce quindi una corrente oscillante la cui ampiezza diminuisce con il tempo. Se il

rapporto R/L e molto piccolo, possiamo trascurare sia γ che il secondo termine sotto la

radice di ω, ottenendo oscillazioni elettriche non smorzate con pulsazione ω =√

1/LC,

che e la pulsazione caratteristica di un circuito LC. Si noti che lo morzamento in un

SUPSI-DTI Corso di Fisica e Modellistica Prof. Andrea Danani

Page 109: Corso di Fisica 3 ONDE E ELETTROMAGNETISMO · funzionamento di specchi, prismi, lenti e dei sistemi ottici costruiti con essi. In generale, nell’attraversamento di una super cie

6.9. CIRCUITI ACCOPPIATI: MUTUA INDUZIONE 109

circuito elettrico e dovuto alla dissipazione di energia nella resistenza. Se la resistenza

R e sufficientemente grande, in modo che R2 > 4L/C, ω diventa immaginaria e la

corrente diminuisce gradualmente senza oscillare.

Le oscillazioni nelle quali non e applicata alcuna fem esterna sono chiamate oscil-

lazioni libere del circuito. Se si aggiunge una fem esterna, si parla di oscillazioni

forzate.

6.9 Circuiti accoppiati: mutua induzione

L’induzione di una forza elettromotrice in seno ad un circuito puo avvenire a causa del

passaggio di una corrente variabile nel circuito stesso, ma puo anche prodursi in corri-

spondenza delle variazioni di corrente in circuiti posti nelle vicinanze. Tale fenomeno

prende il nome di mutua induzione.

Figura 6.7: La mutua induzione

Consideriamo due spire prossime una all’altra (vedi figura 6.7); supponiamo che

una delle due sia percorsa da una corrente I1. Tale corrente produrra nell’intorno della

spira un campo magnetico ~B1 che concatenandosi con la seconda spira, determinera

un flusso φ2 non nullo. Sperimentalmente si verifica che tale flusso e proporzionale alla

corrente I1 che ha prodotto il campo:

φ2 = M21I1 . (6.17)

Analogamente, se e la seconda spira ad essere percorsa da una corrente I2, il flusso del

campo ~B2 prodotto, attraverso la prima spira sara pari a:

φ1 = M12I2 . (6.18)

E’ possibile provare che i due coefficienti di proporzionalita M12 e M21 sono uguali;

poniamo quindi M = M12 = M21. Il termine M prende il nome di coefficiente di

SUPSI-DTI Corso di Fisica e Modellistica Prof. Andrea Danani

Page 110: Corso di Fisica 3 ONDE E ELETTROMAGNETISMO · funzionamento di specchi, prismi, lenti e dei sistemi ottici costruiti con essi. In generale, nell’attraversamento di una super cie

6.9. CIRCUITI ACCOPPIATI: MUTUA INDUZIONE 110

mutua induttanza e dipende dalla forma dei circuiti e dal loro mutuo orientamento.

Anche M e misurato in henry.

Noto M e possibile, quindi, stabilire l’entita della forza elettromotrice indotta in

un circuito per effetto della variazione della corrente in un altro. Se la corrente I1 e

variabile, il flusso φ2 attraverso il circuito 2 cambia e nel circuito viene indotta una fem

VM2 data da:

VM2 = −MdI1

dt. (6.19)

Naturalmente esistera un’analoga espressione per la forza elettromotrice VM1 indotta

nel primo circuito quando il secondo e percorso da una corrente I2 variabile, vale a

dire:

VM1 = −MdI2

dt. (6.20)

Come influenza l’effetto mutuo fra due circuiti l’andamento della corrente nei circuiti

stessi? Riscriviamo l’equazione (6.14) per i due circuiti, aggiungendo le fem indotte

VM1 e VM2: Per il circuito 1, si ha:

L1d2I1

dt+R

dI1

dt+

1

CI1 = −Md2I2

dt2. (6.21)

Per il circuito 2, analogamente:

L2d2I2

dt+R

dI2

dt+

1

CI2 = −Md2I1

dt2. (6.22)

Le due equazioni precedenti costituiscono un insieme di equazioni differenziali accop-

piate. Senza esplicitare la soluzione, si puo affermare che si verifica uno scambio di

energia tra i circuiti. Applicazioni pratiche di questo processo sono i trasformatori e i

generatori ad induzione. L’aspetto piu importante e fondamentale della mutua indu-

zione e quindi il fatto che l’energia puo essere scambiata tra due circuiti mediante il

campo elettromagnetico, il quale agisce come un veicolo per il trasferimento dell’energia

nello spazio.

SUPSI-DTI Corso di Fisica e Modellistica Prof. Andrea Danani

Page 111: Corso di Fisica 3 ONDE E ELETTROMAGNETISMO · funzionamento di specchi, prismi, lenti e dei sistemi ottici costruiti con essi. In generale, nell’attraversamento di una super cie

Capitolo 7

Problemi

Serie 1: Ottica geometrica

Serie 2: Onde

Serie 3: Densita

Serie 4: Campi elettrici

Serie 5: Campi magnetici e induzione

111

Page 112: Corso di Fisica 3 ONDE E ELETTROMAGNETISMO · funzionamento di specchi, prismi, lenti e dei sistemi ottici costruiti con essi. In generale, nell’attraversamento di una super cie

112

SERIE 1: OTTICA GEOMETRICA

1. Quanto deve essere alto uno specchio verticale affinche una persona alta 1.80

possa vedere riflessa la sua immagine completa? [la meta ]

2. Un raggio di luce che si propaga in aria entra in acqua con un angolo di incidenza

di 45o. Se l’indice di rifrazione dell’acqua e n = 1.33, quanto vale l’angolo di

rifrazione? [32o]

3. Un vetro ha l’indice di rifrazione pari a n = 1.50. Quanto vale l’angolo limite per

la riflessione totale della luce che esce dal vetro ed entra in aria, dove n = 1.0?

[42o]

4. Un oggetto alto 1.5 cm si trova a 20 cm davanti a uno specchio concavo avente

raggio di curvatura pari a 30 cm. Determinare la posizione dell’immagine e le

sue dimensioni. Costruisci graficamente l’immagine. [q = 60 cm; h′ = −4.5 cm,

immagine reale capovolta davanti allo specchio]

5. Un oggetto alto 1 cm si trova a 10 cm da uno specchio concavo che ha il raggio

di curvatura di 30 cm. Si localizzi l’immagine e si determini l’ingrandimento.

Costruisci graficamente l’immagine. [q = −30 cm; G = 3, immagine virtuale

diritta dietro lo specchio]

6. Uno specchietto retrovisore convesso ha raggio di curvatura R = 40 cm. Si

localizzi l’immagine e si determini l’ingrandimento di un oggetto distante 10 m.

[q = −19.6 cm; G = 1/51 cm, immagine virtuale dietro lo specchio]

7. L’altezza dell’immagine reale di un oggetto formata da un lente convergente e il

doppio di quella dell’oggetto. Se l’immagine dell’oggetto si trova a 20 cm dalla

lente, calcola la distanza dell’oggetto e la distanza focale della lente [p = 10

cm,f = 6.67 cm]

8. Un oggetto si trova a una distanza di 30 cm da una lente convergente di lunghezza

focale pari a 40 cm. Calcola la distanza dell’immagine dell’oggetto dalla lente

[q = −120 cm]

SUPSI-DTI Corso di Fisica e Modellistica Prof. Andrea Danani

Page 113: Corso di Fisica 3 ONDE E ELETTROMAGNETISMO · funzionamento di specchi, prismi, lenti e dei sistemi ottici costruiti con essi. In generale, nell’attraversamento di una super cie

113

9. Un segmento luminoso lungo 1 cm e posto dinanzi a una lente convergente per-

pendicolarmente all’asse ottico della lente, a una distanza di 30 cm dal suo centro

ottico. L’immagine virtuale e alta 10 cm.

Qual e la lunghezza focale della lente? [f = 33.3 cm]

10. Devi produrre su uno schermo l’immagine ingrandita due volte di un oggetto

luminoso che si trova a 90 cm dallo schermo. Di che lente hai bisogno (tipo e

distanza focale)?

[convergente,f = 20 cm]

11. Un oggetto e posto davanti a una lente divergente a una distanza di 30 cm. La

sua immagine e virtuale e si forma a una distanza di 18 cm dalla lente. Calcola

la lunghezza focale della lente. [f = −45 cm]

12. Una lente biconvessa sottile realizzata con vetro di indice di rifrazione n = 1.5 ha

raggi di curvatura (in valore assoluto) di 10 cm (a destra) e 15 cm (a sinistra).

a) Se ne trovi la distanza focale. [f = 12 cm]

b) Verifica che essa non cambia se si inverte la direzione della luce incidente

13. Un’ape si posa davanti a uno specchio sferico con | f |= 40 cm. L’immagine

prodotta dallo specchio ha lo stesso orientamento dell’ape e la sua altezza si

riduce di un fattore 5.

a) L’immagine e reale o virtuale? Si trova dalla stessa parte dell’ape o dalla

parte opposta?

b) Lo specchio e concavo o convesso? Qual e la sua distanza focale corredata di

segno?

14. Un pesce si trova in un recipiente sferico di vetro pieno di acqua, con in dice di

rifrazione n = 1.33. Il raggio del recipiente e di 15 cm. Il pesce guarda attraverso

il recipiente e vede un gatto sul naso a 10 cm dal recipiente.

a) Dove e l’immagine del naso del gatto?[q = −17.1 cm, virtuale davanti]

b) Risulta ingrandito o rimpicciolito?

SUPSI-DTI Corso di Fisica e Modellistica Prof. Andrea Danani

Page 114: Corso di Fisica 3 ONDE E ELETTROMAGNETISMO · funzionamento di specchi, prismi, lenti e dei sistemi ottici costruiti con essi. In generale, nell’attraversamento di una super cie

114

15. Una lente biconcava ha indice di rifrazione pari a 1.5. I raggi di curvatura hanno

i valori assoluti di 10 cm e 15 cm. Trovare la distanza focale. [f = −12 cm]

16. Una formica si trova lungo l’asse ottico di una lente sottile a facce simmetriche, a

20 cm dalla lente. L’ingrandimento trasversale della formica prodotto dalla lente

e G = −1/4, e l’indice di rifrazione della lente e 1.65. Si determini il tipo di

immagine prodotta, il tipo di lente e il raggio di curvatura della lente. [R = 5.2

cm]

17. Un oggetto si trova davanti a due lenti coassiali sottili con distanza focale f1 =

+24 cm e f2 = +9 cm che sono separate di 10 cm. L’oggetto si trova a 6.0 cm

dalla lente 1. Dove si trova la sua immagine finale? [q2 = 18 cm]

18. Il rifrattometro e uno strumento per la determinazione dell’indice di rifrazione

delle sostanze. Il principio di funzionamento e basato sulla misura dell’angolo

limite.

Nel rifrattometro di Pulfrich un fascio di luce convergente colpisce la superficie

di separazione tra un campione di indice di rifrazione incognito n e un prisma

di indice di rifrazione noto n′ (con n′ > n) per poi riemergere dall’altro lato

del prisma, come indicato in figura. Determinare l’indice di rifrazione incognito.

[n = 1.4]

Dati: n′ = 1.5; naria = 1.0; E = 30o

SUPSI-DTI Corso di Fisica e Modellistica Prof. Andrea Danani

Page 115: Corso di Fisica 3 ONDE E ELETTROMAGNETISMO · funzionamento di specchi, prismi, lenti e dei sistemi ottici costruiti con essi. In generale, nell’attraversamento di una super cie

115

SERIE 2: ONDE

1. Un’onda armonica si sta propagando su una fune costituita da tratti in densita

lineare µ1 e µ2, rispettivamente. La lunghezza d’onda nel tratto λ = 1 m e nel

tratto 2 vale√

2 m. Quale delle seguenti relazioni e corretta?

A µ1 = µ2

B µ1 =√

2µ2

C µ2 =√

2µ1

D µ1 = 2µ2

E µ2 = 2µ1

2. Costruisci la scala diatonica di Mi maggiore (E major) determinando le frequenze

delle note che compongono la scala, usando come riferimento il La4 a 440 Hz.

3. Una corda di violino e tesa con la forza F = 100 N. La sua densita lineare vale

µ = 20 g/m. Determinare:

a) la velocita di propagazione delle onde nella corda;

b) la corrispondente lunghezza d’onda sapendo che esse hanno la frequenza di

500 Hz.

[v = 70.7 m/s, λ = 0.14 m]

4. Una lunga corda orizzontale viene messa in oscillazione dall’azione prodotta ad

un suo estremo da una sbarretta oscillante trasversalmente con frequenza ν = 2

Hertz ed ampiezza 5 cm. La fune ha una densita lineare µ = 0.1kg/m ed ha una

tensione T = 10N . Calcolare:

a) velocita e lunghezza d’onda del moto ondulatorio [10 cm/s, 5 m]

b) Scrivere anche l’equazione dell’onda supponendo che si muova da sinistra

verso destra e che, in t = 0, l’estremita che si trova in x = 0 si trovi nella

posizione di equilibrio y = 0.

5. In un esperimento su onde stazionarie, una corda lunga 90 cm e attaccata al

dente di un diapason che oscilla perpendicolarmente alla lunghezza della corda

a una frequenza di 60 Hz. A quale tensione deve essere sottoposta la corda (ad

esempio con dei pesi all’altra estremita ) se essa vibra con 5 nodi (comprese le

estremita , vale a dire 4 occhielli) [35.7 N ]

SUPSI-DTI Corso di Fisica e Modellistica Prof. Andrea Danani

Page 116: Corso di Fisica 3 ONDE E ELETTROMAGNETISMO · funzionamento di specchi, prismi, lenti e dei sistemi ottici costruiti con essi. In generale, nell’attraversamento di una super cie

116

6. a) Trova la velocita delle onde su una corda di violino di 800 mg lunga 22 cm

se la frequenza fondamentale e di 920 Hz.

b) Quanto e la tensione della corda?

c) Per l’onda fondamentale, qual e la lunghezza d’onda delle onde sulla corda e

delle onde sonore emesse dalla corda?

[405 m/s; 596 N, 0.44 m, 0.373 m]

7. Una fune di densita lineare µ = 100 g/m lunga 100 metri pende da un chiodo di

una parete rocciosa. Il suo estremo libero viene fatto oscillare con moto armonico

a frequenza costante f = 2 Hz. Determinare la velocita di propagazione delle onde

a 90 m e a 10 m dal chiodo e la lunghezza d’onda in prossimita di quelle quote.

[v(90) = 9.9 m/s, λ(90) = 4.95 m, v(10) = 29.7 m/s, λ(10) = 14.85 m]

8. In una sala di registrazione, un microfono e sospeso per il filo a un supporto e

pende in posizione verticale davanti a un flautista. Questi esegue un La (440Hz),

stando fermo davanti al microfono. Allorche si ascolta la registrazione, si nota che

la frequenza varia con un periodo di 1,2 s, aumentando e diminuendo di altezza

fino a un massimo di 0,85 Hz in piu e in meno. Con quale ampiezza il microfono

oscillava avanti e indietro verso il flautista? (Assumi il valore di 344 m/s per la

velocita del suono.)

9. Vuoi misurare con un apparecchio la frequenza di un suono emesso da un ambu-

lanza. Se l’ambulanza si avvicina a te a 72 km/h, la frequenza misurata e di 700

Hz mentre se tu ti avvicini all’ambulanza ferma a 18 km/h, la frequenza misurata

e di 668.6 Hz

a) Qual e la velocita del suono e quale frequenza propria possiede il suono emesso

dall’ambulanza?

b) A che nota nella scala ben temperata corrisponde la frequenza propria emessa,

fissando il La4 a 440 Hz?

10. Un’onda trasversale con un’ampiezza di 40 cm, si propaga a una velocita di 5

m/s e possiede una lunghezza d’onda di 2 metri. Per x = 0 e t = 0, l’ampiezza e

nulla.

a) Quanto vale il periodo?

b) Che ampiezza possiede nel punto x = 7.6 m all’istante t = 1.45 sec?

c) Che velocita verticale possiede il punto x = 5.2 nell’istante t = 3.1 sec?

SUPSI-DTI Corso di Fisica e Modellistica Prof. Andrea Danani

Page 117: Corso di Fisica 3 ONDE E ELETTROMAGNETISMO · funzionamento di specchi, prismi, lenti e dei sistemi ottici costruiti con essi. In generale, nell’attraversamento di una super cie

117

SERIE 3: DENSITA’

1. Di una sbarra lunga due metri, e nota la densita ρ(x) = sin xe−x , 0 ≤ x ≤ 2

a) Trova la massa della sbarra

b) Quanta percentuale di massa e contenuta tra 80 e 120 cm?

2. Tre cariche puntiformi di +2, +3 e +4µC sono poste rispettivamente sui vertici

A,B e C di un triangolo equilatero (con base AB) di 10 cm di lato. Calcola la

forza risultante che agisce sulla carica di 4 µC posta in C.

[R: 15.69 N, in direzione N 6.59o O]

3. Una piccola sfera di massa 0, 2 g e appesa ad un filo tra due piastre verticali

distanti 5 cm. La carica della sfera e di 6 · 10−9 C e il filo si dispone in modo da

formare un angolo di 10o con la verticale. Qual e la densita di carica superficiale

delle piastre e la loro differenza di potenziale?

[R: σ = 5 · 10−7 C/m2; ∆V = 2882 V]

4. Visto in modo piu quantistico, un elettrone dell’atomo di idrogeno puo ritenersi

distribuito in tutto lo spazio con una densita di carica pari a ρ(r) = C e−2r/r0

(r0 = 5.3 · 10−11 m come nell’esercizio 1).

a) Trova la costante C in modo che la carica totale nello spazio sia effettivamente

−e.[R: C = −e/πr3

0]

b) Calcola il campo elettrico in funzione di r.

[R: E(r) = e/(4πε0r2)[(2(r/r0)2 + 2(r/r0) + 1)e−2r/r0 − 1]]

5. Un filo di lunghezza L ha una densita lineare di carica λ ed e posto sull’asse x

fra l’origine e il punto (0, L). Partendo dal potenziale elettrico, dimostra che il

campo elettrico creato dal filo in un punto P (x, y) del piano e dato da:

Ex = − λ

4πε0y(sin θ2 − sin θ1)

Ey =λ

4πε0y(cos θ2 + cos θ1)

dove θ1 = ∠(POL) and θ2 = ∠(PLO).

SUPSI-DTI Corso di Fisica e Modellistica Prof. Andrea Danani

Page 118: Corso di Fisica 3 ONDE E ELETTROMAGNETISMO · funzionamento di specchi, prismi, lenti e dei sistemi ottici costruiti con essi. In generale, nell’attraversamento di una super cie

118

SERIE 4: CAMPI ELETTRICI

1. Abbiamo visto che le linee di forza di un campo elettrico non possono mai

intersecarsi. Spiega perche.

2. L’atomo di idrogeno consiste in un nucleo formato da un protone e un elettrone

orbitale (q = ±1.6 · 10−19 C). Se si assume che l’orbita dell’elettrone sia circolare

e che la distanza fra le due particelle sia pari a 5.3 · 10−11 m, trovare

a) la forza elettrica attrattiva fra le e particelle

b) la velocita orbitale dell’elettrone attorno al protone (me = 9.11 · 10−31 kg)

[R: 8.2 · 10−8 N; 2.2 · 106 m/s]

3. Tre cariche puntiformi di +2, +3 e +4µC sono poste rispettivamente sui vertici

A,B e C di un triangolo equilatero (con base AB) di 10 cm di lato. Calcola la

forza risultante che agisce sulla carica di 4 µC posta in C.

[R: 15.69 N, in direzione N 6.59o O]

4. Trovare nel punto P (0, 0, 5)m il campo elettrico dovuto a Q1 = 0.35µC posta in

P1(0, 4, 0)m e a Q2 = −0.55µC posta in P2(3, 0, 0)m. [ ~E =

(74.9;−48.0;−64.9)N/C]

5. Un filo lungo 10 metri e posto lungo l’asse z e possiede una densita lineare ρ =

2 · 10−8 C/m. Trovare il campo elettrico in un punto a due metri dal filo posto

su un piano perpendicolare al filo passante per il punto medio. [E = 167N/C in

direzione radiale]

6. Una bacchetta piegata ad arco che sottende un arco di 120o con raggio R = 65

cm possiede una carica Q = 4 · 10−2µC distribuita uniformemente.

a) Calcolare il campo elettrico nel centro del cerchio a cui appartiene l’arco.

[E = 703.7 N/C]

b) Quale carica deve possedere una carica puntiforme posta alla distanza R

dal centro opposta al centro dell’arco, per fornire lo stesso campo elettrico?

[−3.31 · 10−2µC]

SUPSI-DTI Corso di Fisica e Modellistica Prof. Andrea Danani

Page 119: Corso di Fisica 3 ONDE E ELETTROMAGNETISMO · funzionamento di specchi, prismi, lenti e dei sistemi ottici costruiti con essi. In generale, nell’attraversamento di una super cie

119

7. Un filo lungo 4 metri con carica Q = 8µC e posto sull’asse delle ascisse fra x = −2

e x = 2. La densita di carica lineare e data

λ(x) = C | x | , −2 ≤ x ≤ 2

Calcola la costante C. Che unita di misura ha? [R: C = 2 µC/m2]

8. Trovare il lavoro compiuto spostando una carica puntiforme Q = −20µC dal-

l’origine al punto (4, 0) m e in seguito al punto (4, 2) m., se il campo elettrico

presente e dato da:~E = (

x

2+ 2y)~ex + 2x~ey

[ L= 80µJ e 320µJ ]

9. Una carica puntiforme Q1 = +6e viene tenuta fissa nell’origine degli assi carte-

siani. Una seconda carica Q2 = −10e viene fissata in x0 = 9.0nm e y = 0. Il

luogo di punti nel piano xy in cui V = 0 e una circonferenza centrata sull’asse x.

a) Trova la posizione xc del centro della circonferenza [ xc = −5.06 nm]

b) Trova il raggio R della circonferenza [ R=8.44 nm]

10. E’ dato il potenziale elettrico

V (x, y, z) = πx2 sin(z)/y

Trova il campo elettrico nel punto P (2,−2, π/6). [ ~E = (π, π/2,√

(3)π) N/C]

11. Una carica di 30 nC e uniformemente distribuita su un disco circolare di raggio

R = 2 m. Trovare il potenziale in un punto sull’asse del disco che si trova a 5

metri d’altezza rispetto al centro. [ V=52 V]

12. Trova il campo elettrico prodotto da una sfera di raggio R con una carica Q

distribuita uniformemente in tutto il volume

a) all’esterno della sfera (r ≥ R)

b) all’interno della sfera per r < R

SUPSI-DTI Corso di Fisica e Modellistica Prof. Andrea Danani

Page 120: Corso di Fisica 3 ONDE E ELETTROMAGNETISMO · funzionamento di specchi, prismi, lenti e dei sistemi ottici costruiti con essi. In generale, nell’attraversamento di una super cie

120

13. Un guscio sferico isolante di raggio interno a ed esterno b ha una densita di carica

volumetrica pari a ρ = K/r, dove K e una costante e r e la distanza dal centro

della sfera che definisce il guscio.

a) Usando il teorema di Gauss, trova il campo elettrico nelle tre zone r < a, a ≤r ≤ b, r > b

b) Al centro del guscio, e posta una carica puntiforme q. Quale dovrebbe essere

il valore di K affinche il campo elettrico nel guscio (a ≤ r ≤ b) sia costante?

[ K = q/2πa2]

c) Quanto vale il campo elettrico in quel caso? [ E = −q/4πε0a2]

14. Visto in modo piu quantistico, un elettrone dell’atomo di idrogeno puo ritenersi

distribuito in tutto lo spazio con una densita di carica pari a ρ(r) = C e−2r/r0

(r0 = 5.3 · 10−11 m come nell’esercizio 2).

a) Trova la costante C in modo che la carica totale nello spazio sia effettivamente

−e.[R: C = −e/πr3

0]

b) Calcola il campo elettrico in funzione di r.

[R: E(r) = e/(4πε0r2)((2(r/r0)2 + 2(r/r0) + 1)e−2r/r0 − 1

)]

SUPSI-DTI Corso di Fisica e Modellistica Prof. Andrea Danani

Page 121: Corso di Fisica 3 ONDE E ELETTROMAGNETISMO · funzionamento di specchi, prismi, lenti e dei sistemi ottici costruiti con essi. In generale, nell’attraversamento di una super cie

121

SERIE 5: CAMPI MAGNETICI E INDUZIONE

1. La figura mostra uno spettrometro di mas-

sa per misurare la massa di ioni. Suppo-

nendo che in un esperimento, abbiamo B =

80 mT , V = 1000 V e la carica degli ioni e

di −e. Si constata che x = 1.625 m. Qual

e la massa dei singoli ioni in unita di massa

atomica (1u = 1.66 · 10−27)

[ m = 203.9 u]

2. Nella figura a fianco, sia l = 1.5 m, B = 0.5 T e

v = 4 m/s.

a) Qual e la differenza di potenziale tra i capi del

conduttore? [R: 3V]

b) Quale terminale e a potenziale piu alto?[R:(a)]

3. Il campo magnetico B in tutti i punti interni alla

circonferenza tratteggiata in figura e uguale a 0.5

T e decresce alla velocita di 0.1 T/s.

a) Qual e la forma delle linee di forza del campo

elettrico indotto? [R: cerchio orientati in

direzione oraria]

b) Qual e il valore di questo campo e la fem. nel-

l’anello? [R:

5 · 10−3, π · 10−3]

4. Un disco metallico di raggio R ruota con velocita angolare ω in presenza di un

campo magnetico uniforme B parallelo all’asse di rotazione. Trova la differenza

di potenziale tra il centro e il bordo del disco. [R: ωR2B/2]

SUPSI-DTI Corso di Fisica e Modellistica Prof. Andrea Danani

Page 122: Corso di Fisica 3 ONDE E ELETTROMAGNETISMO · funzionamento di specchi, prismi, lenti e dei sistemi ottici costruiti con essi. In generale, nell’attraversamento di una super cie

122

5. Una spira rettangolare viene mossa in una regione

dello spazio nella quale il campo magnetico e dato

da ~B = (6 − y, 0, 0) T . Ponendo che per t = 0,

la spira si trovi nella posizione indicata, trovare la

fem nella spira in funzione di t se v = 2 m/s. [R:

0, 2 V]

6. Nella figura a fianco, il lato del quadrato e di 2.0 cm.

Nella regione vi e un campo magnetico, in direzione

normale e uscente dal foglio, la cui intensita e pari

a B = 4.0t2y T.

Si determini la f.e.m. indotta lungo il quadrato a

t = 2.5 sec. e il suo verso [R: 8 · 10−5 V, senso

orario].

7. Nella figura a fianco, e rappresentata una bacchet-

ta conduttrice di massa m e di lunghezza L che puo

scivolare senza attrito. Il generatore G fa circolare

nel circuito una corrente costante I.

a) Si determini la velocita della bacchetta in funzione del tempo, supponendo

che la bacchetta sia ferma a t = 0. [R: v = IBLt/m]

b) Si sostituisca al generatore una batteria che fornisce una f.e.m costante Σ.

Si dimostri che la velocita tende a un valore costante e si determini il suo

valore. [R: v∞ = Σ/BL]

c) Quanto vale la corrente nella bacchetta in questo limite? I = 0

d) Trova la corrente in funzione del tempo

SUPSI-DTI Corso di Fisica e Modellistica Prof. Andrea Danani


Recommended