+ All Categories
Home > Documents > M.Usai Elettromagnetismo applicato allingegneria Elettrica ed Energetica_3b 1 ELETTROMAGNETISMO...

M.Usai Elettromagnetismo applicato allingegneria Elettrica ed Energetica_3b 1 ELETTROMAGNETISMO...

Date post: 01-May-2015
Category:
Upload: samuela-pini
View: 214 times
Download: 0 times
Share this document with a friend
47
M.Usai Elettromagnetismo applicato all’ingegneria Elettrica ed Energetica_3b 1 ELETTROMAGNETISMO APPLICATO ALL'INGEGNERIA ELETTRICA ED ENERGETICA_3B (ultima modifica 01/10/2012) Distribuzioni di carica equivalente nei dielettrici polarizzati Per analizzare l’effetto macroscopico dei dipoli indotti, si definisce un vettore di polarizzazione o momento elettrico specifico : n é il numero delle molecole per unità di volume •il numeratore è la somma dei momenti dei bipoli indotti con, contenuti in un volume elementare v. P k p =qd 2 1 0 lim m C v p P v n k k v k p + - d punto R a R θ k p
Transcript
Page 1: M.Usai Elettromagnetismo applicato allingegneria Elettrica ed Energetica_3b 1 ELETTROMAGNETISMO APPLICATO ALL'INGEGNERIA ELETTRICA ED ENERGETICA_3B (ultima.

M.Usai Elettromagnetismo applicato all’ingegneria Elettrica ed Energetica_3b 1

ELETTROMAGNETISMO APPLICATO ALL'INGEGNERIA ELETTRICA ED ENERGETICA_3B

(ultima modifica 01/10/2012)

Distribuzioni di carica equivalente nei dielettrici polarizzati

Per analizzare l’effetto macroscopico dei dipoli indotti, si definisce un vettore di polarizzazione o momento elettrico specifico :

• n é il numero delle molecole per unità di volume• il numeratore è la somma dei momenti dei bipoli indotti

con, contenuti in un volume elementare v.

P

kp =qd

2

1

0 lim

m

C

v

p

P

vn

kk

v

kp

+

-d

punto

Ra R

θkp

Page 2: M.Usai Elettromagnetismo applicato allingegneria Elettrica ed Energetica_3b 1 ELETTROMAGNETISMO APPLICATO ALL'INGEGNERIA ELETTRICA ED ENERGETICA_3B (ultima.

M.Usai Elettromagnetismo applicato all’ingegneria Elettrica ed Energetica_3b 2

Vettore di polarizzazione o Momento elettrico specifico:

2

1

0 lim

m

C

v

p

P

vn

kk

v

P

Punto

+

-d

Ra R

θkp

Δv

baricentro del volumetto elementare Δv

generico bipolocontenuto nel volume Δv

Page 3: M.Usai Elettromagnetismo applicato allingegneria Elettrica ed Energetica_3b 1 ELETTROMAGNETISMO APPLICATO ALL'INGEGNERIA ELETTRICA ED ENERGETICA_3B (ultima.

M.Usai Elettromagnetismo applicato all’ingegneria Elettrica ed Energetica_3b 3

Il momento del dipolo di un volume elementare dv’, è:

Con un procedimento analogo alla definizione del potenziale dovuto a una distribuzione di carica elementare volumica, il potenziale elettrostatico per un volume elementare dv’ è :

Il potenziale dovuto al dielettrico polarizzato in un volume finito V’ si otterrà attraverso l’integrazione della precedente espressione:

dove R è la distanza dell’elemento di volume dv’ dal punto del campo stabilito.

In coordinate cartesiane R2= (x-x’)2 + (y-y’)2 + (z-z’)2

pd

'dvPpd

'dvR4π

aPdV

20

R

'

2R

0

'dvR

aP

1V

V

4 2V

Rπε

ap V

o

r

Page 4: M.Usai Elettromagnetismo applicato allingegneria Elettrica ed Energetica_3b 1 ELETTROMAGNETISMO APPLICATO ALL'INGEGNERIA ELETTRICA ED ENERGETICA_3B (ultima.

M.Usai Elettromagnetismo applicato all’ingegneria Elettrica ed Energetica_3b 4

L’intensità del campo elettrico dovuto a una data distribuzione di cariche in un dielettrico è diversa da quella dello spazio vuoto.

Il postulato dell’elettrostatica valido nello spazio libero è:

mentre, in un dielettrico dovendo tenere conto della distribuzione di cariche in esso presenti, il postulato dell’elettrostatica valido in presenza di un dielettrico qualsiasi, diventa :

; densità volumica delle cariche libere

p ; densità volumica di polarizzazione.

ρE

ρ ε

P

ε

ρE :cui da

Pρcon ρρε

1E

oo

ppo

PEo

Page 5: M.Usai Elettromagnetismo applicato allingegneria Elettrica ed Energetica_3b 1 ELETTROMAGNETISMO APPLICATO ALL'INGEGNERIA ELETTRICA ED ENERGETICA_3B (ultima.

M.Usai Elettromagnetismo applicato all’ingegneria Elettrica ed Energetica_3b 5

Sorge l’esigenza di introdurre una delle quattro grandezze fondamentali per lo studio dei Campi Elettrostatici:

la densità di flusso elettrico o spostamento elettrico:

Nel caso più generale applicando il principio di sovrapposizione degli effetti lo spostamento elettrico è espresso dalla somma di due termini dove:

•il primo: rappresenta lo spostamento proprio nel vuoto e

•il secondo: lo spostamento dovuto alla polarizzazione della materia.

2m

C PED o

Eo P

ρ PEo

Page 6: M.Usai Elettromagnetismo applicato allingegneria Elettrica ed Energetica_3b 1 ELETTROMAGNETISMO APPLICATO ALL'INGEGNERIA ELETTRICA ED ENERGETICA_3B (ultima.

M.Usai Elettromagnetismo applicato all’ingegneria Elettrica ed Energetica_3b 6

L’uso del vettore consente di legare, attraverso l’operatore divergenza, il campo elettrico e la distribuzione delle cariche libere in qualsiasi mezzo, senza la necessità di tener conto esplicitamente della polarizzazione del vettore o della densità di polarizzazione di carica p:

Questa relazione insieme al postulato:

rappresentano le due equazioni differenziali fondamentali per la risoluzione dei campi elettrostatici in un mezzo qualsiasi.

D

P

30 m

C ρD)PE (

m

V 0E

Page 7: M.Usai Elettromagnetismo applicato allingegneria Elettrica ed Energetica_3b 1 ELETTROMAGNETISMO APPLICATO ALL'INGEGNERIA ELETTRICA ED ENERGETICA_3B (ultima.

M.Usai Elettromagnetismo applicato all’ingegneria Elettrica ed Energetica_3b 7

La forma integrale partendo dalla relazione:

si ottiene facendo l’integrale volumico di entrambi i membri:

da cui, applicando il teorema della divergenza:

Questa è un’altra espressione generale della legge di Gauss:

il flusso totale del vettore uscente da una qualunque superficie chiusa, è uguale alla carica totale racchiusa dalla superficie.

Mentre la legge di Gauss nel vuoto:

3m

C ρD

C dv ρdv DVV

C QsdDS

D

0S

QsdE

Page 8: M.Usai Elettromagnetismo applicato allingegneria Elettrica ed Energetica_3b 1 ELETTROMAGNETISMO APPLICATO ALL'INGEGNERIA ELETTRICA ED ENERGETICA_3B (ultima.

M.Usai Elettromagnetismo applicato all’ingegneria Elettrica ed Energetica_3b 8

La legge di Gauss è utile per determinare il campo elettrico in condizioni di simmetria.

Se il dielettrico è isotropo e per esso valgono relazioni lineari,

la polarizzazione è direttamente proporzionale all’intensità del campo dielettrico e la costante di proporzionalità χe è indipendente dalla direzione del campo:

***************************************************

Un mezzo dielettrico è

• lineare se è indipendente dal campo E e

• omogeneo se è indipendente dalle coordinate spaziali.

o e

e

P ε χ E

con χ suscettibilità elettrica (adimensionale)

χ e

χ e

Page 9: M.Usai Elettromagnetismo applicato allingegneria Elettrica ed Energetica_3b 1 ELETTROMAGNETISMO APPLICATO ALL'INGEGNERIA ELETTRICA ED ENERGETICA_3B (ultima.

M.Usai Elettromagnetismo applicato all’ingegneria Elettrica ed Energetica_3b 9

Se il dielettrico è isotropo, sostituendo l’espressione di in funzione della suscettibilità, nella relazione:

si ottiene:

con:

definita permettività assoluta o permettività e

quantità adimensionale chiamata permettività relativa o costante dielettrica del mezzo.

P

2o m

C PEεD

2roeoeoom

C EεEεε Eχ1εE χεEεD

m

F εεε ro

e 1ε

εε

or

Page 10: M.Usai Elettromagnetismo applicato allingegneria Elettrica ed Energetica_3b 1 ELETTROMAGNETISMO APPLICATO ALL'INGEGNERIA ELETTRICA ED ENERGETICA_3B (ultima.

M.Usai Elettromagnetismo applicato all’ingegneria Elettrica ed Energetica_3b 10

Legge di Gauss per i dielettrici isotropi.

Se il dielettrico è isotropo con

essendo:

S i è così ottenuta l’espressione generale della legge di Gauss valida per i dielettrici isotropi.

2m

C EεD

m

F εεε ro

C C

C QsdD

SS

S

Q

sdEQsdE

Page 11: M.Usai Elettromagnetismo applicato allingegneria Elettrica ed Energetica_3b 1 ELETTROMAGNETISMO APPLICATO ALL'INGEGNERIA ELETTRICA ED ENERGETICA_3B (ultima.

M.Usai Elettromagnetismo applicato all’ingegneria Elettrica ed Energetica_3b 11

Se o é indipendente dalle coordinate spaziali, si dice che il mezzo è omogeneo.

Un mezzo si dice mezzo semplice quando è omogeneo, lineare e isotropo e per esso la permettività relativa è costante.

Per i materiali anisotropi la costante dielettrica varia con la direzione del campo e i vettori hanno generalmente direzioni diverse e la permettività è un fasore (tensor). In forma matriciale:

E ed D

z

y

x

333231

232221

131211

z

y

x

E

E

E

εεε

εεε

εεε

D

D

D

Page 12: M.Usai Elettromagnetismo applicato allingegneria Elettrica ed Energetica_3b 1 ELETTROMAGNETISMO APPLICATO ALL'INGEGNERIA ELETTRICA ED ENERGETICA_3B (ultima.

M.Usai Elettromagnetismo applicato all’ingegneria Elettrica ed Energetica_3b 12

Per i cristalli le coordinate di riferimento si possono scegliere secondo le direzioni degli assi del cristallo così che i termini della della matrice della permettività diversi da quelli della diagonale risultino nulli:

I mezzi aventi tali proprietà (ij=0 per ij) sono detti biassiali (biaxial).

Se 1 = 2 , il mezzo è detto uniassiale (uniaxial).

Se 1 = 2 = 3, il mezzo è detto isotropo.

accettare

z

y

x

3

2

1

z

y

x

E

E

E

ε00

0ε0

00ε

D

D

D

Page 13: M.Usai Elettromagnetismo applicato allingegneria Elettrica ed Energetica_3b 1 ELETTROMAGNETISMO APPLICATO ALL'INGEGNERIA ELETTRICA ED ENERGETICA_3B (ultima.

M.Usai Elettromagnetismo applicato all’ingegneria Elettrica ed Energetica_3b 13

Rigidità dielettrica ( Dielectric strength)

Quando il campo elettrico è molto forte, esso attrae fuori dalle molecole gli elettroni e questi, accelerati dal campo elettrico, collidono violentemente con la struttura molecolare, causando dislocazioni permanenti e danni alla materia.

Si verifica un effetto valanga di ionizzazione dovuto alle collisioni e il materiale dielettrico diventa conduttore e si possono avere elevate correnti.

Questo fenomeno si chiama rottura del dielettrico.

La rigidità dielettrica del materiale è l’intensità del campo elettrico che un materiale dielettrico può sostenere, senza che si verifichi la rottura del dielettrico.

Per l’aria, alla pressione atmosferica, la rigidità dielettrica è mm

kV 3

Page 14: M.Usai Elettromagnetismo applicato allingegneria Elettrica ed Energetica_3b 1 ELETTROMAGNETISMO APPLICATO ALL'INGEGNERIA ELETTRICA ED ENERGETICA_3B (ultima.

M.Usai Elettromagnetismo applicato all’ingegneria Elettrica ed Energetica_3b 14

Materiale Costante dielettrica Rigidità dielettrica V/m

Aria (pres. atmosferica) 1.0 3×106

Olio minerale 2.3 15×106

Carta 2÷4 15×106

Polistirolo 2.6 20×106

Gomma 2.3 ÷4 25×106

Vetro 4 ÷ 10 30 ×106

Mica 6 200 ×106

Page 15: M.Usai Elettromagnetismo applicato allingegneria Elettrica ed Energetica_3b 1 ELETTROMAGNETISMO APPLICATO ALL'INGEGNERIA ELETTRICA ED ENERGETICA_3B (ultima.

M.Usai Elettromagnetismo applicato all’ingegneria Elettrica ed Energetica_3b 15

Condizioni al contorno per i campi elettrostatici

Spesso nello spazio in cui agiscono le forze elettrostatiche il dielettrico non è omogeneo , ma sono presenti mezzi con differenti proprietà fisiche.

In questi casi è necessario conoscere le relazioni tra le grandezze del campo nella interfaccia (superficie di separazione ) tra i due mezzi.

Per determinare come e variano in prossimità della interfaccia , si procede in maniera analoga a come già fatto per una interfaccia tra un conduttore e lo spazio libero.

E D

Page 16: M.Usai Elettromagnetismo applicato allingegneria Elettrica ed Energetica_3b 1 ELETTROMAGNETISMO APPLICATO ALL'INGEGNERIA ELETTRICA ED ENERGETICA_3B (ultima.

M.Usai Elettromagnetismo applicato all’ingegneria Elettrica ed Energetica_3b 16

Si consideri una interfaccia tra due mezzi generici:

Per determinate la relazione tra le componenti tangenziali del campo sul contorno si calcola l’integrale lineare scalare o circuitazione del vettore lungo il percorso elementare abcda e trascurando i contributi nei tratti bc = da =h, si ha:

0ΔwEΔwEwd-E wdEldE 2t1t

abcda

21

a

b

cd

w

h mezzo 2

s

mezzo 1

hS

2D

1D

2E

1E

1na

2na

1

2

E

E

Page 17: M.Usai Elettromagnetismo applicato allingegneria Elettrica ed Energetica_3b 1 ELETTROMAGNETISMO APPLICATO ALL'INGEGNERIA ELETTRICA ED ENERGETICA_3B (ultima.

M.Usai Elettromagnetismo applicato all’ingegneria Elettrica ed Energetica_3b 17

Dalla precedente relazione si ha che:

che dice che la componente tangenziale del campo è continua attraverso l’interfaccia.

Se i due mezzi hanno rispettivamente permettività 1 e 2 si ha:

[V/m] EE 2t1t

E

. ε

D

ε

D

2

2t

1

1t

Page 18: M.Usai Elettromagnetismo applicato allingegneria Elettrica ed Energetica_3b 1 ELETTROMAGNETISMO APPLICATO ALL'INGEGNERIA ELETTRICA ED ENERGETICA_3B (ultima.

M.Usai Elettromagnetismo applicato all’ingegneria Elettrica ed Energetica_3b 18

Per determinate la relazione tra le componenti normali del campo sul contorno si applica la legge di Gauss a un cilindretto elementare con una base nel mezzo 1 e una nel mezzo 2, come riportato in figura.

L’altezza del cilindretto sia trascurabile per cui, applicando la legge di Gauss, si ha:

dove versori uscenti e rispettivamente normali alle superfici dei mezzi 1 e 2.

Dalla precedente relazione si ottiene che:

1 2n1 n2 n11 2 S

S

ds D a D a ΔS a D D ΔS ρ ΔSD n2n1 ae a

][C/m ρDD 22n1n S

Page 19: M.Usai Elettromagnetismo applicato allingegneria Elettrica ed Energetica_3b 1 ELETTROMAGNETISMO APPLICATO ALL'INGEGNERIA ELETTRICA ED ENERGETICA_3B (ultima.

M.Usai Elettromagnetismo applicato all’ingegneria Elettrica ed Energetica_3b 19

La relazione: dice che

la componente normale di è discontinua attraverso l’interfaccia, dove è presente una carica superficiale e l’entità della discontinuità è uguale alla densità superficiale di carica.

Se il mezzo 2 è un conduttore e l’equazione precedente diventa:

che diventa: quando il mezzo 1 è lo spazio libero.

La relazione ottenuta ha dunque validità generale.

][C/m ρDD 22n1n S

0D2

S1n11n ρEεD

Sno ρEε

D

Page 20: M.Usai Elettromagnetismo applicato allingegneria Elettrica ed Energetica_3b 1 ELETTROMAGNETISMO APPLICATO ALL'INGEGNERIA ELETTRICA ED ENERGETICA_3B (ultima.

M.Usai Elettromagnetismo applicato all’ingegneria Elettrica ed Energetica_3b 20

Infine se i due dielettrici sono in contatto senza che ci siano cariche libere nella interfaccia, S=0;

In questo caso il campo devia allontanandosi dalla normale alla superficie, nel mezzo con permettività più elevata.

Riassumendo in generale le condizioni al contorno che devono essere soddisfate per i campi elettrostatici sono:

• componenti tangenziali:

• componenti normali:

2 21n 2n 1 1n 2 2n

1 1

tanD D ε E ε E

tan

EE 2t1t

S21 ρDDan2

Page 21: M.Usai Elettromagnetismo applicato allingegneria Elettrica ed Energetica_3b 1 ELETTROMAGNETISMO APPLICATO ALL'INGEGNERIA ELETTRICA ED ENERGETICA_3B (ultima.

M.Usai Elettromagnetismo applicato all’ingegneria Elettrica ed Energetica_3b 21

Capacità e condensatori

Un conduttore in un campo elettrostatico è un corpo equipotenziale e le cariche che giacciono sul conduttore, si distribuiscono sulla sua superficie in modo tale che il campo elettrico all’interno di esso si annulli.

Se si aumenta il potenziale V di un fattore k, aumenta anche il campo dello stesso fattore essendo:

ma poiché:

si ha che la densità di carica e la carica aumentano della stessa quantità, per cui rimane invariato il rapporto Q/U e si può scrivere:

VE

on ε/ρaES

Q CU

Page 22: M.Usai Elettromagnetismo applicato allingegneria Elettrica ed Energetica_3b 1 ELETTROMAGNETISMO APPLICATO ALL'INGEGNERIA ELETTRICA ED ENERGETICA_3B (ultima.

M.Usai Elettromagnetismo applicato all’ingegneria Elettrica ed Energetica_3b 22

C = Q/U, è chiamata capacità del corpo conduttore isolato: essa è la carica elettrica che deve essere aggiunta al corpo per ottenere un incremento unitario del potenziale elettrico.

C si misura in [C/V] o [F] (farad).

Il condensatore consiste in due conduttori separati dal vuoto o da un mezzo dielettrico, dove i conduttori possono avere una forma arbitraria.

Le linee di campo elettrico che:• hanno origine in corrispondenza delle cariche positive e

terminano sulle cariche negative hanno un andamento del tipo indicato nella figura riportata di seguito e comunque

• sono perpendicolari alle superfici dei conduttori, che sono superfici equipotenziali.

Page 23: M.Usai Elettromagnetismo applicato allingegneria Elettrica ed Energetica_3b 1 ELETTROMAGNETISMO APPLICATO ALL'INGEGNERIA ELETTRICA ED ENERGETICA_3B (ultima.

M.Usai Elettromagnetismo applicato all’ingegneria Elettrica ed Energetica_3b 23

Quando un generatore di tensione U12 viene collegato tra i due conduttori, si ha un trasferimento di carica, con un addensamento di carica +Q in un conduttore e –Q sull’altro come riportato in figura. La capacità del condensatore sarà espressa in funzione della

differenza di potenziale tra i due conduttori:

La capacità di un condensatore è una proprietà fisica di un sistema di due conduttori.

+

V12

+Q-Q

++

++

+++

+

+

+

-

12

QC [F]

U

Page 24: M.Usai Elettromagnetismo applicato allingegneria Elettrica ed Energetica_3b 1 ELETTROMAGNETISMO APPLICATO ALL'INGEGNERIA ELETTRICA ED ENERGETICA_3B (ultima.

M.Usai Elettromagnetismo applicato all’ingegneria Elettrica ed Energetica_3b 24

La capacità di un condensatore dipende dalla geometria dei conduttori e dalla permettività del mezzo interposto tra loro: essa non dipende ne dalla carica Q, ne dalla differenza di potenziale U12.

Un condensatore ha un valore di capacità anche quando non gli viene applicata alcuna carica o differenza di potenziale.

Dalla relazione:

la capacità C si può determinare in due modi;

• assumendo una U12 e determinando Q in funzione di U12, oppure

• assumendo una Q e determinando U12 in funzione di Q.

12

QC [F]

U

Page 25: M.Usai Elettromagnetismo applicato allingegneria Elettrica ed Energetica_3b 1 ELETTROMAGNETISMO APPLICATO ALL'INGEGNERIA ELETTRICA ED ENERGETICA_3B (ultima.

M.Usai Elettromagnetismo applicato all’ingegneria Elettrica ed Energetica_3b 25

Procedura generale per la determinazione della capacità C

1. Stabilire il sistema di coordinate appropriato in base alla geometria del condensatore (coordinate cartesiane, cilindriche e sferiche);

2. Assumere la distribuzione di cariche +Q e –Q sui conduttori;

3. Determinare in funzione della carica Q per mezzo della equazione che esprime la legge di Gauss o anche altre relazioni:

4. Determinare la U12 calcolando l’integrale (*):

5. Determinare infine C calcolando il rapporto:

(*) integrando dal conduttore che è carico a –Q sino a quello carico a +Q

E

εQ

AdEA

ldEU

1

212

12UQ

C

Page 26: M.Usai Elettromagnetismo applicato allingegneria Elettrica ed Energetica_3b 1 ELETTROMAGNETISMO APPLICATO ALL'INGEGNERIA ELETTRICA ED ENERGETICA_3B (ultima.

M.Usai Elettromagnetismo applicato all’ingegneria Elettrica ed Energetica_3b 26

Condensatore ad armature piane

( Sistema di coordinate cartesiane)

Esso è costituito da due armature piane di area A separate da uno spessore d di dielettrico uniforme di permettività .

Sulle due armature siano uniformemente distribuite le cariche +Q e - Q rispettivamente, con densità di carica:

y

+ + ++

+ + +

--- -- - -

E

d+

+

-- x

permettività del dielettrico

AQ

ρQ

o

Page 27: M.Usai Elettromagnetismo applicato allingegneria Elettrica ed Energetica_3b 1 ELETTROMAGNETISMO APPLICATO ALL'INGEGNERIA ELETTRICA ED ENERGETICA_3B (ultima.

M.Usai Elettromagnetismo applicato all’ingegneria Elettrica ed Energetica_3b 27

Per questa configurazione geometrica, il sistema di riferimento più appropriato è quello cartesiano.

Si assume che le cariche siano uniformemente distribuite sulle superfici conduttrici con densità superficiale:

poiché sul contorno del conduttore:

con versore normale alla superficie del conduttore.

SQ

ρS

nnt a E 0E Q

na

Page 28: M.Usai Elettromagnetismo applicato allingegneria Elettrica ed Energetica_3b 1 ELETTROMAGNETISMO APPLICATO ALL'INGEGNERIA ELETTRICA ED ENERGETICA_3B (ultima.

M.Usai Elettromagnetismo applicato all’ingegneria Elettrica ed Energetica_3b 28

Trascurando l’effetto ai bordi, si può ritenere costante all’interno del dielettrico:

da cui:

La capacità risulta:

• legata ad e alle dimensioni A e d del condensatore e

• indipendente da Q e U12.

E

dA

Qdya

AQ

aldEUd

0

yy

dy

0y12

dεA

UQ

C12

Page 29: M.Usai Elettromagnetismo applicato allingegneria Elettrica ed Energetica_3b 1 ELETTROMAGNETISMO APPLICATO ALL'INGEGNERIA ELETTRICA ED ENERGETICA_3B (ultima.

M.Usai Elettromagnetismo applicato all’ingegneria Elettrica ed Energetica_3b 29

Condensatore cilindrico( Sistema di coordinate cilindriche)

Esso è costituito da un conduttore di raggio interno r1 e uno coassiale esterno di raggio interno r2 :

Il campo, essendo normale alle superfici conduttrici, risulta radiale. Per la natura del campo è opportuno scegliere un sistema di coordinate cilindriche con un asse coincidente con l’asse del cilindro.

r1

rr2 l

Page 30: M.Usai Elettromagnetismo applicato allingegneria Elettrica ed Energetica_3b 1 ELETTROMAGNETISMO APPLICATO ALL'INGEGNERIA ELETTRICA ED ENERGETICA_3B (ultima.

M.Usai Elettromagnetismo applicato all’ingegneria Elettrica ed Energetica_3b 30

Trascurando gli effetti dei bordi e applicando la legge di Gauss:

si ottiene:

Dalla quale integrando in dr:

Quindi per un condensatore cilindrico:

εQ

AdEA

lr 2πQ

aEaE rrr

1

2r

rrr

r

r12 rr

lnl 2

Qdr a

lr 2Q

a rdEU1

2

1

2

1

212

rr

ln

l 2UQ

C

Page 31: M.Usai Elettromagnetismo applicato allingegneria Elettrica ed Energetica_3b 1 ELETTROMAGNETISMO APPLICATO ALL'INGEGNERIA ELETTRICA ED ENERGETICA_3B (ultima.

M.Usai Elettromagnetismo applicato all’ingegneria Elettrica ed Energetica_3b 31

Condensatore sferico( Sistema di coordinate sferiche)

Esso è costituito da una sfera conduttrice di raggio r1e un conduttore esterno concentrico con raggio della parete sferica interna pari a r2. La regione di spazio compresa tra i due conduttori è riempita con un dielettrico di permettività . Il sistema di riferimento più appropriato è quello sferico.

Si assume la carica +Q e –Q sui conduttori interno ed esterno rispettivamente e si sceglie il sistema di riferimento a coordinate sferiche.

r1

r

r2

Page 32: M.Usai Elettromagnetismo applicato allingegneria Elettrica ed Energetica_3b 1 ELETTROMAGNETISMO APPLICATO ALL'INGEGNERIA ELETTRICA ED ENERGETICA_3B (ultima.

M.Usai Elettromagnetismo applicato all’ingegneria Elettrica ed Energetica_3b 32

Applicando la legge di Gauss alla superficie gaussiana di raggio generico r (con r1 < r < r2) si ha:

Quindi per un condensatore sferico si ha:

e per una sfera conduttrice di raggio r1, che si può assimilare concentrica ad una sfera conduttrice di raggio r2 :

C=4r1

2rrrr ε π4

QaEaE

21212

11

2

41

2

1

2 rr

Qdr

r

QdraEU

r

rr

r

r

21

12

r

1

r

14π

U

QC

Page 33: M.Usai Elettromagnetismo applicato allingegneria Elettrica ed Energetica_3b 1 ELETTROMAGNETISMO APPLICATO ALL'INGEGNERIA ELETTRICA ED ENERGETICA_3B (ultima.

M.Usai Elettromagnetismo applicato all’ingegneria Elettrica ed

Energetica_3b

33

Nei circuiti i condensatori vengono spesso collegati in vari modi per ottenere opportuni valori di capacità equivalente.

Le due connessioni base sono le c. in serie e le c. in parallelo.

Collegamento in serie

I condensatori vengono collegati in cascata ( head-to-tail).

I terminali esterni sono solo quelli del primo condensatore e dell’ultimo e le cariche +Q e –Q si stabilizzano su ciascun conduttore indipendentemente dal valore delle loro capacità.

Le differenze di potenziale tra i singoli condensatori sono:

,C

QU ........,.......... ,

CQ

U ,CQ

Un

nn

2

22

1

11

+Q +Q +Q-Q -Q-Q+ -

U

C1 C2 Cn

Page 34: M.Usai Elettromagnetismo applicato allingegneria Elettrica ed Energetica_3b 1 ELETTROMAGNETISMO APPLICATO ALL'INGEGNERIA ELETTRICA ED ENERGETICA_3B (ultima.

M.Usai Elettromagnetismo applicato all’ingegneria Elettrica ed Energetica_3b 34

La tensione elettrostatica applicata sarà uguale alla somma delle tensioni che si stabiliscono ai capi di ciascun condensatore:

Con CS capacità equivalente serie:

n

1i iSS

n

1i i

n

1ii C

1

C1

CQ

CQ

U U

+-

U

+Q -Q

CS

Page 35: M.Usai Elettromagnetismo applicato allingegneria Elettrica ed Energetica_3b 1 ELETTROMAGNETISMO APPLICATO ALL'INGEGNERIA ELETTRICA ED ENERGETICA_3B (ultima.

M.Usai Elettromagnetismo applicato all’ingegneria Elettrica ed Energetica_3b 35

Collegamento in parallelo

Ai capi di ciascun elemento è applicata la stessa differenza di potenziale:

Q1 + -

Q2

Qn

+

+ -

-

U

+

-

U

+

+ -Q

Cp

Page 36: M.Usai Elettromagnetismo applicato allingegneria Elettrica ed Energetica_3b 1 ELETTROMAGNETISMO APPLICATO ALL'INGEGNERIA ELETTRICA ED ENERGETICA_3B (ultima.

M.Usai Elettromagnetismo applicato all’ingegneria Elettrica ed Energetica_3b 36

La carica totale è la somma di tutte le cariche:

Q=Q1+Q2+………………+Qn=CpU

poiché Qi=CiU Cp=C1+C2+………………..+Cn=

Dove Cp è la capacità del condensatore equivalente parallelo.

n

1iiC

Page 37: M.Usai Elettromagnetismo applicato allingegneria Elettrica ed Energetica_3b 1 ELETTROMAGNETISMO APPLICATO ALL'INGEGNERIA ELETTRICA ED ENERGETICA_3B (ultima.

M.Usai Elettromagnetismo applicato all’ingegneria Elettrica ed Energetica_3b 37

Condensatore ad armature piane con dielettrico costituito da due strati di materiale isolante.

La superficie di separazione dei dielettrici è una superficie equipotenziale e può considerarsi metallizzata, per cui il condensatore in esame equivale a due condensatori in serie aventi rispettivamente capacità:

+

-U1

2

d1

d2

U1

U2

2

22

1

11 ,

d

AC

d

AC

Page 38: M.Usai Elettromagnetismo applicato allingegneria Elettrica ed Energetica_3b 1 ELETTROMAGNETISMO APPLICATO ALL'INGEGNERIA ELETTRICA ED ENERGETICA_3B (ultima.

M.Usai Elettromagnetismo applicato all’ingegneria Elettrica ed Energetica_3b 38

e la capacità equivalente:

Il campo elettrico varia passando da un mezzo a permettività 1

a un mezzo a permettività 2 e il suo andamento è così determinabile:

U=U1+U2

con:

1221

21

2

1

1

21 2

1

C

11

C

dd

Add

A

C

E

1

1 1 2 2 1

2 1 1 22

2

QU

C U C ε d

Q U C ε dU

C

Page 39: M.Usai Elettromagnetismo applicato allingegneria Elettrica ed Energetica_3b 1 ELETTROMAGNETISMO APPLICATO ALL'INGEGNERIA ELETTRICA ED ENERGETICA_3B (ultima.

M.Usai Elettromagnetismo applicato all’ingegneria Elettrica ed Energetica_3b 39

da cui:

Udεdε

dεUUU

Udεdε

dεU

Udεdε

UUUU Udεdε

U

1221

1221

1221

212

221

12122

21

121

Page 40: M.Usai Elettromagnetismo applicato allingegneria Elettrica ed Energetica_3b 1 ELETTROMAGNETISMO APPLICATO ALL'INGEGNERIA ELETTRICA ED ENERGETICA_3B (ultima.

M.Usai Elettromagnetismo applicato all’ingegneria Elettrica ed Energetica_3b 40

Quindi le espressioni delle differenze di potenziale e del campo saranno:

Con queste relazioni è possibile legare il valore del campo per il quale il materiale isolante perde le proprietà dielettriche (rigidità dielettrica) alla tensione applicata alle due armature tra le quali sono interposti i dielettrici.

Relazioni analoghe si determinano per condensatori di forma diverse (cilindrici , sferici etc.)

Udεdε

dεU

Udεdε

dεU

1221

212

1221

121

U dεdε

εdU

E

U dεdε

εdU

E

1221

1

2

22

1221

2

1

11

Page 41: M.Usai Elettromagnetismo applicato allingegneria Elettrica ed Energetica_3b 1 ELETTROMAGNETISMO APPLICATO ALL'INGEGNERIA ELETTRICA ED ENERGETICA_3B (ultima.

M.Usai Elettromagnetismo applicato all’ingegneria Elettrica ed Energetica_3b 41

Capacità nei sistemi multiconduttori

Si considerino più conduttori in un sistema isolato come in figura. Le posizioni dei conduttori sono arbitrarie e uno dei conduttori può rappresentare la terra (V=0).

Se su ciascun conduttore è presente una carica Qi, questa inciderà sul potenziale di ciascun corpo.

32

1 N

Page 42: M.Usai Elettromagnetismo applicato allingegneria Elettrica ed Energetica_3b 1 ELETTROMAGNETISMO APPLICATO ALL'INGEGNERIA ELETTRICA ED ENERGETICA_3B (ultima.

M.Usai Elettromagnetismo applicato all’ingegneria Elettrica ed Energetica_3b 42

Poiché la relazione tra la carica e il potenziale è lineare, è possibile scrivere il seguente sistema di equazioni che legano i potenziali Vi

degli N conduttori alle cariche Qi:

dove pij sono chiamati coefficienti di potenziale, che dipendono dalla forma e posizione dei conduttori, così come la permettività dipende dal mezzo che li circonda.

n

2

1

nnn2n1

2n2221

1n1211

n

2

1

Q

.

.

.

Q

Q

p..pp

.....

.....

.....

p..pp

p..pp

V

.

.

.

V

V

Page 43: M.Usai Elettromagnetismo applicato allingegneria Elettrica ed Energetica_3b 1 ELETTROMAGNETISMO APPLICATO ALL'INGEGNERIA ELETTRICA ED ENERGETICA_3B (ultima.

M.Usai Elettromagnetismo applicato all’ingegneria Elettrica ed Energetica_3b 43

Le equazioni precedenti possono essere invertite per esprimere le cariche in funzione dei potenziali come:

dove i coefficienti cij sono costanti e i loro valori dipendono solo dai valori di pij .

n

2

1

nnn2n1

2n2221

1n1211

n

2

1

V

.

.

.

V

V

c..cc

.....

.....

.....

c..cc

c..cc

Q

.

.

.

Q

Q

Page 44: M.Usai Elettromagnetismo applicato allingegneria Elettrica ed Energetica_3b 1 ELETTROMAGNETISMO APPLICATO ALL'INGEGNERIA ELETTRICA ED ENERGETICA_3B (ultima.

M.Usai Elettromagnetismo applicato all’ingegneria Elettrica ed Energetica_3b 44

•I coefficienti cii con indici uguali, sono chiamati coefficienti di capacità.

Essi sono uguali al rapporto tra le cariche Qi e il potenziale Vi dell’iesimo conduttore, quando tutti gli altri conduttori sono collegati a terra (assumono il potenziale di terra V=0).

•I coefficienti con indici diversi cij sono chiamati coefficienti di induzione.

Se esiste una carica positiva Qi sull’iesimo conduttore, Vi sarà positivo, ma la carica indotta Qj sull’jesimo conduttore sarà negativa.

Quindi:

• i coefficienti di capacità cii sono > 0 ( positivi) e

• i coefficienti di induzione cij sono < 0 (negativi).

Page 45: M.Usai Elettromagnetismo applicato allingegneria Elettrica ed Energetica_3b 1 ELETTROMAGNETISMO APPLICATO ALL'INGEGNERIA ELETTRICA ED ENERGETICA_3B (ultima.

M.Usai Elettromagnetismo applicato all’ingegneria Elettrica ed Energetica_3b 45

Schermo elettrostatico

L’uso di uno schermo elettrostatico rappresenta una tecnica per ridurre la capacità di accoppiamento tra corpi conduttori. Si consideri un corpo conduttore 1 all’interno di uno schermo conduttore 2 collegato a terra (assume il potenziale di terra) e un terzo corpo conduttore 3.

Il campo elettrico all’interno del conduttore 2 è nullo, ossia l’involucro metallico 2 può essere adoperato per sottrarre la parte di spazio da esso delimitata, all’influenza di campi elettrici esterni.

21

3

Page 46: M.Usai Elettromagnetismo applicato allingegneria Elettrica ed Energetica_3b 1 ELETTROMAGNETISMO APPLICATO ALL'INGEGNERIA ELETTRICA ED ENERGETICA_3B (ultima.

M.Usai Elettromagnetismo applicato all’ingegneria Elettrica ed Energetica_3b 46

Schermo elettrostatico

Le proprietà dello schermo elettrostatico possono essere dedotte anche dalla definizione generale di capacità nei sistemi con n conduttori.

Infatti per il caso illustrato ponendo V2 = 0 ( potenziale di riferimento di terra) si ha:

Q1= C10V1+ C12 (V1-V2)+ C13(V1-V3)

Q1= C10V1+ C12V1+ C13(V1-V3)

Quando Q1= 0, non c’è campo elettrico all’interno dello schermo 2; quindi il corpo 1 e lo schermo 2 hanno lo stesso potenziale, V1=V2= 0.

Page 47: M.Usai Elettromagnetismo applicato allingegneria Elettrica ed Energetica_3b 1 ELETTROMAGNETISMO APPLICATO ALL'INGEGNERIA ELETTRICA ED ENERGETICA_3B (ultima.

M.Usai Elettromagnetismo applicato all’ingegneria Elettrica ed Energetica_3b 47

Dalla espressione di Q1 si vede che la capacità di accoppiamento C13 deve essere nulla in quanto V3 é arbitrario.

Ciò significa che una variazione di V3 non influisce su la Q1 e viceversa. Quindi si è in presenza di uno schermo elettrostatico tra i corpi conduttori 1 e 3.

Ovviamente la stessa schermatura si ottiene se lo schermo conduttore a terra 2 racchiude il corpo 3 al posto del corpo 1.


Recommended