Fotosensori La luce di scintillazione prodotta in un mezzo dal passaggio di una radiazione può...

Post on 02-May-2015

213 views 0 download

transcript

Fotosensori

La luce di scintillazione prodotta in un mezzo dal passaggio di una radiazione può essere raccolta da opportuni fotosensori, per produrre un segnale elettrico e dare informazioni sulla radiazione originaria.

Esempi di fotosensori attualmente usati:

Fotomoltiplicatori

Avalanche photodiodes (APD)

Silicon photomultipliers (SiPM)

….

I fotomoltiplicatori

Schema di funzionamento di un fotomoltiplicatore tradizionale:

Raccolta di luce

Emissione di elettroni dal fotocatodo

Moltiplicazione di elettroni tra i dinodi

Segnale elettrico finale

I fotomoltiplicatori: il fotocatodo

Fotocatodo:-Produce elettroni per effetto fotoelettrico generato dalla luce incidente

-Energia fotoni luce scintillazione: circa 3 eV

-Fotocatodo rivestito da materiale semiconduttore, con lavoro estrazione 1.5-2 eV- Emissione spontanea per effetto termico (energia media elettroni a T ambiente = 0.025 eV)

Il fotomoltiplicatore: emissione spontanea e dark current

Emissione spontanea di elettroni dal fotocatodo per effetto termico

Energia media degli elettroni a T ambiente = 0.025 eV La distribuzione in energia degli elettroni fa sì che una certa frazione possa avere energia sufficiente a sfuggire Rate di emissione a T ambiente: Nei metalli: circa 100/s m2

Nei semiconduttori: circa 106-108 /s m2

Effetto di questa emissione: dark current (corrente di elettroni anche in assenza di radiazione incidente)

Il fotomoltiplicatore: Quantum efficiency e Spectral Response

Parametri che definiscono un fotomoltiplicatore: Quantum Efficiency (QE) = N. fotoelettroni emessi/N. fotoni incidenti

Valori tipici nei fotomoltiplicatori: circa 20-30% QE fortemente dipendente dalla lunghezza d’onda

Ottimizzazione tra emissione da parte dello scintillatore e sensibilità del PMT

Il fotomoltiplicatore: emissione secondaria e processo di moltiplicazione

-Elettroni emessi con energie di circa 1 eV-Differenza di potenziale tra dinodi: dell’ordine di 100 V-Energia richiesta per creare un elettrone secondario: 2-3 eV-Fattore di moltiplicazione: N.elettroni emessi/elettrone incidente (circa 30)-Di questi, solo una frazione δ (circa 5) contribuisce alla resa complessiva-Per n dinodi, fattore di guadagno complessivo G =α δn, dove α è circa 1.- Per n=10, α=1 e δ=5, G=510 = 107

Il fotomoltiplicatore: fluttuazioni statistiche

-Il fattore δ tuttavia non è costante da evento a evento-Le fluttuazioni statistiche possono essere descritte in prima approssimazione da una distribuzione di Poisson, con media δ e deviazione standard √ δ-Dopo n stadi di amplificazione (n dinodi), il valor medio del numero di elettroni secondari è δn

-Quando l’evento è iniziato da un grande numero (decine/centinaia) di fotoelettroni, il segnale è molto più grande del rumore, prodotto in genere da singoli fotoelettroni, altrimenti può confondersi con il rumore.

Il fotomoltiplicatore: risposta temporale

- Tempo caratteristico emissione fotoelettroni: <0.1 ns

- Tempo di transito attraverso i dinodi, da fotocatodo ad anodo: decine di ns

- Dispersione nel tempo di transito (TTS= Transit Time Spread): 1-3 ns Parametro importante ai fini della risposta temporale complessiva Migliorabile con opportuna geometria dei dinodi Diminuisce con il numero di fotoelettroni

- Rise time: valori tipici 1-10 ns

Il fotomoltiplicatore: noise

- Sorgente di rumore principale in un PMT: emissione termoionica di elettroni- Tipicamente un solo fotoelettrone alla volta emesso-Il contributo di questo rumore può non essere trascurabile se il valore medio del numero di fotoelettroni dal segnale «vero» è piccolo-Il rumore può essere diminuito abbassando la temperatura-Un fotomoltiplicatore non deve essere esposto alla luce, neppure quando non è alimentato. Se succede, la dark current può aumentare di molto, anche per diverse ore (causa: emissione di luce da fosforescenza del vetro)-Altra causa di dark current: radioattività del vetro (40K, Th), oppure radiazione cosmica secondaria (muoni, elettroni)-Afterpulses: segnali prodotti da luce emessa negli stadi successivi e che raggiunge il fotocatodo. Tempi caratteristici simili al tempo di transito (decine di ns). Importanti specialmente in misure di timing-

Il fotomoltiplicatore: alimentazione

- Alimentazione del PMT: usualmente distribuita tra i vari dinodi mediante partitori di tensione, con condensatori o diodi zener in parallelo.

- In genere tra fotocatodo e primo dinodo è applicata una tensione maggiore, allo scopo di focalizzare meglio gli elettroni emessi dal fotocatodo

- La polarità può essere stabilita in 2 modi equivalenti, con il fotocatodo a –HV e l’anodo a zero, oppure fotocatodo a zero e anodo a +HV

Il fotomoltiplicatore: schermo magnetico

- Poiché gli elettroni all’interno del PMT hanno energie molto basse (pochi eV- centinaia di eV), possono essere deviati facilmente da un campo magnetico

- In presenza di campi magnetici un PMT deve essere schermato con schermi in mu-metal (lega metallica ad alta permeabilità magnetica)

- Anche il campo magnetico terrestre può influenzare il comportamento di un PMT (guadagno differente a seconda dell’orientazione rispetto al campo magnetico)

- In rivelatori di particelle, posti all’interno di grandi magneti, l’uso di fotomoltiplicatori è precluso, e bisogna utilizzare altri tipi di fotosensori

Il fotomoltiplicatore: forma e dimensioni

In genere di forma cilindrica, con diametri da pochi cm ad alcune decine di cm.

Il fotomoltiplicatore: applicazioni

Data l’estrema sensibilità ai fotoni, sono adoperati in tutte le applicazioni in cui è necessario rivelare luce di bassa intensità: - luce di scintillazione da scintillatori - luce Cerenkov prodotta nell’atmosfera - luce raccolta da telescopi ottici, in astronomia - in medicina (diagnostica per immagini) e biologia (bioluminescenza),.. - …

Una galleria di immagini/1

L’esperimento Super-Kamiokande impiega oltre 10000 fotomoltiplicatori in una miniera abbandonata piena di acqua, per rivelare i neutrini

Una galleria di immagini/2

L’esperimento Auger impiega oltre 10000 fotomoltiplicatori per rivelare la luce di fluorescenza prodotta nell’atmosfera dai cosmici

Galleria di immagini/3

L’esperimento WA98 al CERN impiega oltre 10000 fotomoltiplicatori per rivelare la luce di scintillazione prodotta nei cristalli del calorimetro elettromagnetico

Non solo PMT: Fotosensori di altro genere

Galleria di immagini/4

Anche nell’esperimento AMS (AntiMatterSearch) a bordo della Stazione Spaziale Internazionale si impiegano fotomoltiplicatori.

Galleria di immagini/5

In bioluminescenza si misura mediante fotomoltiplicatorila debole emissione di luce prodotta da organismi viventi

Non solo PMT: altri fotosensori

In molte applicazioni, i tradizionali fotomoltiplicatori presentano dei problemi: - Dimensioni talvolta troppo grandi rispetto all’area sensibile - Influenzati dai campi magnetici - Risposta spettrale non sempre adatta alla luce da rivelare - Efficienza quantica non elevata - Stabilità del guadagno non sempre ottimale - Tensioni di alimentazione elevata (kV)

In tempi più recenti sono stati sviluppati fotosensori più compatti a stato solido, in particolare: - Avalanche photodiodes (APD) - Silicon photomultipliers (SiPM)

Avalanche photodiodes

- Primi prototipi di APD sviluppati circa 40 anni addietro- Inizialmente molto piccoli (1 mm2), sensibili solo all’infrarosso, di basso guadagno e ad elevato costo-In tempi più recenti, disponibili devices di area più elevata (decine di mm2), sensibilità spettrale nel blu e ultravioletto, basso costo e relativamente alto guadagno, con tensioni più basse dei PMT-Usati adesso in molte applicazioni con scintillatori per rivelatori di particelle ad alta energia

APD: cosa sono?

Componenti a stato solido che sfruttano l’effetto fotoelettrico per creare cariche, le quali vengono poi moltiplicate da un opportuno campo elettrico

APD: parametri operativi

- A causa di uno strato anti-riflesso in superficie, la maggior parte dei fotoni è convertita in segnale, con efficienze dell’ordine dell’80%- La tensione di alimentazione è di alcune centinaia di volt- Guadagni non elevatissimi, dell’ordine di 50-100- Alta sensibilità alla temperatura, necessitano di correzioni (qualche

% per ogni grado di variazione)- Proprietà temporali buone- Particolarmente adatti a convertire la luce proveniente da fibre WLS o da piccoli scintillatori- Dimensioni da 1x1 a 5x5 mm2 e oltre

Uso di APD in calorimetri elettromagnetici

I calorimetri elettromagnetici dell’esperimento ALICE@LHC utilizzano circa 20000 APD per leggere la luce di scintillazione prodotta nei moduli di rivelazione, attraverso fibre WLS

Silicon photomultipliers (SiPM)

- Costituiti da una matrice di fotodiodi a valanga su un substrato comune-Dimensioni di ogni cella: da decine a centinaia di micron (densità dell’ordine di 1000/mm2 )-Ogni cella lavora in modo (quasi) indipendente. Un fotone dà segnale in una cella, ma non (in prima approssimazione) nelle altre

Silicon photomultipliers (SiPM)

- Lavorano a tensione molto bassa (30-70 V)

-Efficienza quantica: 20-30%

-Guadagni elevati, fino a 106

-Risoluzione temporale molto buona (<< 1ns)-Indipendenti dal campo magnetico

-Tuttavia: dimensioni ancora molto piccole, circa 10 mm2 dark count rate molto elevati

Silicon photomultipliers (SiPM)

Conosciuti anche con altri nomi: MRS-APD MPPC … Alcuni modelli Hamamatsu

Silicon photomultipliers (SiPM)

- Prendendo la somma di tutte le celle colpite, si può valutare quante celle sono state interessate, e quindi quanti fotoni sono stati rivelati.

- Tutte le celle sono lette in parallelo, quindi la matrice genera un segnale analogico, proporzionale entro certi limiti al numero di fotoni che la colpiscono

SiPM: Photon Detection Efficiency (PDE)

- La PDE è il risultato di 3 fattori: 1) Il fill factor geometrico 2) La quantum efficiency (QE), dipendente dalla lunghezza

d’onda 3) La probabilità di trigger della valanga (dipende dalla

tensione)

SiPM: Fill factor

Rapporto tra area attiva e area totale

- Dipende dal design - Celle più piccole danno fill factor minori

Ad esempio celle piccole da 20 micron danno Fill factor dell’ordine del 30%, mentre celleda 100 micron possono arrivare a fill factor dell’80%

SiPM: Quantum Efficiency

- La quantum efficiency intrinseca

può essere anche molto elevata,

dell’ordine dell’80-90%.

SiPM: Trigger probability

La probabilità di triggerare una valanga dipende dalla posizione in cui è stata creata la carica, dal tipo di carica (elettrone/lacuna) e dalla tensione di alimentazione.

SiPM: possibili strutture

Readout of light from WLS fibers

In molte applicazioni, i SiPM sono usati per la lettura della luce trasportata da fibre WLS poste all’interno di scintillatori

SiPM: applicazioni tipiche

Lettura luce di scintillazione prodotta in scintillatori e trasportata da fibre WLS (calorimetri)

Test di prototipi per PET a tempo di volo mediante correlazione gamma-gamma da 22Na: cristalli scintillanti di LYSO letti da SiPM

SiPM: applicazioni tipiche/2

Confronto tra fotosensori